P3214-[HNOI2011]卡农【dp】
正题
题目链接:https://www.luogu.com.cn/problem/P3214
题目大意
一个由\(1\sim n\)的所有整数构成的集合\(S\),求出它的\(m\)个不同非空子集满足每个元素都出现了偶数次。
解题思路
集合的话不用考虑顺序,可以输出有序的答案除以\(m!\)就好了。
选\(i\)个的话,考虑偶数次的条件,无论前面\(i-1\)个集合如何选取,最后一个都能根据情况调整过来,所以不考虑重复的话方案就是\(P_{2^n}^{i-1}\)
设\(f_i\)表示选出\(i\)个集合的答案,因为上面那种方案可能会导致最后一个集合出现重复等问题,我们要减去不合法的。
首先有可能是空集,那么表示前面\(i-1\)个集合都是合法的,所以方案是\(f_{i-1}\)。然后是重复,考虑和它重复的集合\(j\),那么剩下\(i-2\)个就是合法的,然后这两个重复的集合有\(2^n-(i-2)-1\)种取值(减去空集和前面出现过的),方案就是\(f_{i-2}\times (i-1)\times(2^n-i+1)\)
所以方程就是
\]
\(O(n)\)转移即可。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10,P=1e8+7;
ll n,m,A[N],f[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld",&m,&n);ll p=1;
for(ll i=1;i<=m;i++)p=p*2ll%P;
ll fac=1;A[0]=1;
for(ll i=1;i<=n;i++)
A[i]=A[i-1]*(p-i)%P,fac=fac*i%P;
f[0]=1;
for(ll i=2;i<=n;i++)
f[i]=(A[i-1]-f[i-1]-f[i-2]*(i-1)%P*(p-i+1)%P)%P;
f[n]=f[n]*power(fac,P-2)%P;
printf("%lld\n",(f[n]+P)%P);
return 0;
}
P3214-[HNOI2011]卡农【dp】的更多相关文章
- P3214 [HNOI2011]卡农
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...
- bzoj2339[HNOI2011]卡农 dp+容斥
2339: [HNOI2011]卡农 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 842 Solved: 510[Submit][Status][ ...
- 洛谷 P3214 - [HNOI2011]卡农(线性 dp)
洛谷题面传送门 又是一道我不会的代码超短的题( 一开始想着用生成函数搞,结果怎么都搞不粗来/ll 首先不妨假设音阶之间存在顺序关系,最终答案除以 \(m!\) 即可. 本题个人认为一个比较亮的地方在于 ...
- 【bzoj2339】[HNOI2011]卡农 dp+容斥原理
题目描述 题解 dp+容斥原理 先考虑有序数列的个数,然后除以$m!$即为集合的个数. 设$f[i]$表示选出$i$个集合作为满足条件的有序数列的方案数. 直接求$f[i]$较为困难,考虑容斥,满足条 ...
- 【BZOJ2339】[HNOI2011]卡农 组合数+容斥
[BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...
- [BZOJ2339][HNOI2011]卡农
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...
- BZOJ2339[HNOI2011]卡农——递推+组合数
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...
- [HNOI2011]卡农 (数论计数,DP)
题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...
- [HNOI2011]卡农
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 题解
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
随机推荐
- git上传项目
$ git config --global user.name "xxxxxxxx" --设置名字 $ git config --global user.email "x ...
- 有了Swagger2,再也不用为写Api文档头疼了
1.为什么要写Api文档 现在,前后端分离的开发模式已经非常流行,后端开发工程师只负责完成后端接口,前端页面的开发和渲染完全由前端工程师完成. 问题来了,前端工程师怎么知道后端接口的具体定义呢?答案是 ...
- 测试框架unit之assertion断言使用详解
NUnit是.Net平台的测试框架,广泛用于.Net平台的单元测试和回归测试中,下面我们用示例详细学习一下他的使用方法 任何xUnit工具都使用断言进行条件的判断,NUnit自然也不例外,与其它的xU ...
- leaflet 动态线渲染
可以采用leaflet插件 leaflet-ant-path ... <script src="js/leaflet-ant-path.js" type="text ...
- WPF---数据绑定(二)
一.绑定到非UI元素 上篇中,我们绑定的数据源均是派生自UIElement的WPF元素.本篇描述的绑定数据源是一个我们自定义的普通的类型. 注:尽管绑定的数据源可以是任意类型的对象,但Path必须总是 ...
- Javascript - 异步操作和读取文件
node.js读取文件 node.js内置了异步读取文件的模块,可以很方便地读取文件的数据.先创建三个txt文档,在根目录下创建一个readFile.js 输入以下代码,然后在vscode的终端中输入 ...
- blog.mzywucai.club停站
考研,不经营了,两台服务器也关了:blog.mzywucai.club也关了,就让它沉了吧!以后做个更好的?
- MySQL alter table时执行innobackupex全备再看Seconds_Behind_Master
1.场景描述 早上7:25 接到Report中心同学告警,昨天业务报表数据没有完整跑出来,缺少500位业务员的数据,并且很快定位到,缺少的是huabei_order库上的数据.Report中心的数据是 ...
- TCP连接中的状态
1. 正常状态转换 我们用图 3-13 来显示在正常的 TCP 连接的建立与终止过程中,客户与服务器所经历的不同状态.读者可以对照图 3-12 来阅读,使用图 3-12 的状态图来跟踪图 3-13 的 ...
- vim编辑器设置
由于ubantu自带的vi编辑器并不好用,而开发一般使用vim编辑器,vim需要自己安装(sudo apt-get install vim 即可安装),但是默认的设置使用起来很不舒服,因此可以通过修改 ...