牛客挑战赛48C-铬合金之声【Prufer序列】
正题
题目链接:https://ac.nowcoder.com/acm/contest/11161/C
题目大意
\(n\)个点加\(m\)条边使得不存在环,每种方案的权值是所有联通块的大小乘积。
求所有方案的权值和。
\(1\leq n\leq 10^9,1\leq m\leq 10^7\)
解题思路
就是分成\(n-m\)个树,然后权值比较麻烦。
但是发现权值是大小,所以可以理解为有根树,这样就是纯粹的求方案数了。
然后我们还可以优化,设虚根\(0\),我们限制其度数为\(n-m\)就可以分为\(n-m\)个有根树了。
所以用\(Prufer\)序列统计的话方案数就是
\]
时间复杂度\(O(n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll P=1e9+7;
ll n,m,C,inv[11000000];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld",&n,&m);ll C=1;
for(ll i=1;i<=m;i++)C=C*(n-i)%P;
inv[1]=1;
for(ll i=2;i<=m;i++)
inv[i]=P-inv[P%i]*(P/i)%P,C=C*inv[i]%P;
printf("%lld\n",C*power(n,m)%P);
}
牛客挑战赛48C-铬合金之声【Prufer序列】的更多相关文章
- 牛客挑战赛33 B-鸽天的放鸽序列
也许更好的阅读体验 \(\mathcal{Description}\) 定义一个长为\(n\)的\(01\)序列\(A_1, A_2, \dots, A_n\)的权值为\(\sum_{i=1}^n ...
- 牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp
LINK:牛牛与序列 (牛客div1的E题怎么这么水... 还没D难. 定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_ ...
- 牛客挑战赛 30 A 小G数数
题目链接:https://ac.nowcoder.com/acm/contest/375/A 分析:我写的时候竟然把它当成了DP....... 还建了个结构体DP数组,保存一二位,不知道当时脑子在抽啥 ...
- 良心送分题(牛客挑战赛35E+虚树+最短路)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 给你一棵树,然后把这棵树复制\(k\)次,然后再添加\(m\)条边,然后给你起点和终点,问你起点到终点的最短路. 思路 由于将树复制\(k\) ...
- Luogu5611 Ynoi2013 D2T2/牛客挑战赛32F 最大子段和 分块、分治
传送门 之前一直咕着的,因为一些特殊的原因把这道题更掉算了-- 有一个对值域莫队+线段树的做法,复杂度\(O(n\sqrt{n} \log n)\)然而牛客机子实在太慢了没有希望(Luogu上精细实现 ...
- 牛客挑战赛34 A~E
闷声发大财 A O(nmk)dp即可,因为带了1/2的常数+2s所以很稳 #include <algorithm> #include <iostream> #include & ...
- 牛客挑战赛30 小G砍树 树形dp
小G砍树 dfs两次, dp出每个点作为最后一个点的方案数. #include<bits/stdc++.h> #define LL long long #define fi first # ...
- 牛客挑战赛30D 小A的昆特牌(组合数学)
题面 传送门 题解 很容易写出一个暴力 \[\sum_{i=l}^r {i+n-1\choose n-1}{s-i+m\choose m}\] 即枚举选了多少个步兵,然后用插板法算出方案数 我们对这个 ...
- 牛客挑战赛30-T3 小G砍树
link 题目大意: n个节点的带标号无根树.每次选择一个度数为1的节点并将它从树上移除.问总共有多少种不同的方式能将这棵树删到只剩 1 个点.两种方式不同当且仅当至少有一步被删除的节点不同. 题解: ...
随机推荐
- uwp 之语音识别
xml code ---------------------------------------------- <Page x:Class="MyApp.MainPage" ...
- HTML基本语法(慕课网学习笔记)
标题 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8& ...
- AOP的底层实现-CGLIB动态代理和JDK动态代理
AOP是目前Spring框架中的核心之一,在应用中具有非常重要的作用,也是Spring其他组件的基础.它是一种面向切面编程的思想.关于AOP的基础知识,相信多数童鞋都已经了如指掌,我们就略过这部分,来 ...
- mysql基础操作(一):DDL、DML
-- 1.在命令行中开启数据库: net start mysql -- 2.在命令行中关闭数据库: net stop mysql 1.DDL语句:create.drop.alter -- 查看所有的数 ...
- 《深入理解java虚拟机》第3版笔记3
第3章 垃圾收集器与内存分配策略 可达性分析算法 在Java技术体系里面,固定可作为GC Roots的对象包括以下几种: 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使 ...
- Go版本管理--处理不兼容
目录 1. 简介 2.能否引起不兼容的包 3.如何处理incompatible 1. 简介 Go module的版本选择机制,其中介绍了一个Module的版本号需要遵循v<major>.& ...
- Linux Ubuntu SVN图形界面 安装使用
安装 sudo apt-get install rapidsvn 使用 rapidsvn
- 正整数a、b、c、d满足ab=cd,则a+b+c+d必定为合数。
正整数a.b.c.d满足ab=cd,则a+b+c+d必定为合数. 证法一:记s=a+b+c+d.如果四个数全为1,s=4,显然是合数.考虑四个数非全1的情形,由对称性,不妨令a>1. 设p是a的 ...
- Go-内置函数之append、recover用法
package main import "fmt" import "time" func test() { defer func() { if err := r ...
- 使用uView UI+UniApp开发微信小程序
在前面随笔的介绍中,我们已经为各种框架,已经准备了Web API.Winform端.Bootstrap-Vue的公司动态网站前端.Vue&Element的管理前端等内容,基本都是基于Web A ...