牛客挑战赛48C-铬合金之声【Prufer序列】
正题
题目链接:https://ac.nowcoder.com/acm/contest/11161/C
题目大意
\(n\)个点加\(m\)条边使得不存在环,每种方案的权值是所有联通块的大小乘积。
求所有方案的权值和。
\(1\leq n\leq 10^9,1\leq m\leq 10^7\)
解题思路
就是分成\(n-m\)个树,然后权值比较麻烦。
但是发现权值是大小,所以可以理解为有根树,这样就是纯粹的求方案数了。
然后我们还可以优化,设虚根\(0\),我们限制其度数为\(n-m\)就可以分为\(n-m\)个有根树了。
所以用\(Prufer\)序列统计的话方案数就是
\]
时间复杂度\(O(n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll P=1e9+7;
ll n,m,C,inv[11000000];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld",&n,&m);ll C=1;
for(ll i=1;i<=m;i++)C=C*(n-i)%P;
inv[1]=1;
for(ll i=2;i<=m;i++)
inv[i]=P-inv[P%i]*(P/i)%P,C=C*inv[i]%P;
printf("%lld\n",C*power(n,m)%P);
}
牛客挑战赛48C-铬合金之声【Prufer序列】的更多相关文章
- 牛客挑战赛33 B-鸽天的放鸽序列
也许更好的阅读体验 \(\mathcal{Description}\) 定义一个长为\(n\)的\(01\)序列\(A_1, A_2, \dots, A_n\)的权值为\(\sum_{i=1}^n ...
- 牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp
LINK:牛牛与序列 (牛客div1的E题怎么这么水... 还没D难. 定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_ ...
- 牛客挑战赛 30 A 小G数数
题目链接:https://ac.nowcoder.com/acm/contest/375/A 分析:我写的时候竟然把它当成了DP....... 还建了个结构体DP数组,保存一二位,不知道当时脑子在抽啥 ...
- 良心送分题(牛客挑战赛35E+虚树+最短路)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 给你一棵树,然后把这棵树复制\(k\)次,然后再添加\(m\)条边,然后给你起点和终点,问你起点到终点的最短路. 思路 由于将树复制\(k\) ...
- Luogu5611 Ynoi2013 D2T2/牛客挑战赛32F 最大子段和 分块、分治
传送门 之前一直咕着的,因为一些特殊的原因把这道题更掉算了-- 有一个对值域莫队+线段树的做法,复杂度\(O(n\sqrt{n} \log n)\)然而牛客机子实在太慢了没有希望(Luogu上精细实现 ...
- 牛客挑战赛34 A~E
闷声发大财 A O(nmk)dp即可,因为带了1/2的常数+2s所以很稳 #include <algorithm> #include <iostream> #include & ...
- 牛客挑战赛30 小G砍树 树形dp
小G砍树 dfs两次, dp出每个点作为最后一个点的方案数. #include<bits/stdc++.h> #define LL long long #define fi first # ...
- 牛客挑战赛30D 小A的昆特牌(组合数学)
题面 传送门 题解 很容易写出一个暴力 \[\sum_{i=l}^r {i+n-1\choose n-1}{s-i+m\choose m}\] 即枚举选了多少个步兵,然后用插板法算出方案数 我们对这个 ...
- 牛客挑战赛30-T3 小G砍树
link 题目大意: n个节点的带标号无根树.每次选择一个度数为1的节点并将它从树上移除.问总共有多少种不同的方式能将这棵树删到只剩 1 个点.两种方式不同当且仅当至少有一步被删除的节点不同. 题解: ...
随机推荐
- 【GIS】点图层符号的方向和大小
方向:根据属性字段设置点图层中每个要素的符号方向和大小, 1 所有要素使用同一种符号---简单渲染 在图层属性---符号系统---单一符号中进行设置,首先设置符号,在后面的[高级]选项按钮中分别设置[ ...
- 2014 12 27 bestcoder 第一题
水的不行不行的一道题 也是自己做的第一道题 纪念下 1 #include<stdio.h> 2 #include<string.h> 3 #include<math.h ...
- Ant高级-path和fileset
一 <path/> 和 <classpath/> 你可以用":"和";"作为分隔符,指定类似PATH和CLASSPATH的引用.Ant会 ...
- Spring第一课:核心API(三)
以上是Spring的核心部分,其中需要了解的是:BeanFactory.ApplicationContext[FileSystemXmlApplicationContext.ClassPathXmlA ...
- 自研 Pulsar Starter:winfun-pulsar-spring-boot-starter
原文:自研 Pulsar Starter:winfun-pulsar-spring-boot-starter 里程碑 版本 功能点 作者 完成 1.0.0 支持PulsarTemplate发送消息&a ...
- 解析ThreadPoolExecutor类是如何保证线程池正确运行的
摘要:对于线程池的核心类ThreadPoolExecutor来说,有哪些重要的属性和内部类为线程池的正确运行提供重要的保障呢? 本文分享自华为云社区<[高并发]通过源码深度解析ThreadPoo ...
- 三大操作系统对比使用之·Ubuntu16.04
时间:2018-11-13 整理:byzqy 本篇是一篇个人对 Ubuntu 16.04(桌面版)使用方法.技巧以及应用推荐的文章,以便查询和分享! 打开终端: Ctrl+Alt+T,即可打开&quo ...
- php实现验证码(数字、字母、汉字)
验证码在表单实现越来越多了,但是用js的写的验证码,总觉得不方便,所以学习了下php实现的验证码.好吧,其实是没有事情干,但是又不想浪费时间,所以学习了下php实现验证码.正所谓,技多不压身.而且,也 ...
- Redis-技术专区-帮从底层彻底吃透RDB技术原理
每日一句 低头是一种能力,它不是自卑,也不是怯弱,它是清醒中的嬗变.有时,稍微低一下头,或者我们的人生路会更精彩. 前提概要 Redis是一个的键-值(K-V)对的内存数据库服务,通常包含了任意个非空 ...
- 微信小程序基础知识笔记
微信小程序笔记 文件构成 全局文件 app.json 小程序全局配置文件,必要,自动生成 app.js 小程序入口JS文件,一般只需申明全局变量.处理生命周期以及版本升级即可,必要 app.wxss ...