DL4J实战之二:鸢尾花分类
欢迎访问我的GitHub
https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;
本篇概览
- 本文是《DL4J》实战的第二篇,前面做好了准备工作,接下来进入正式实战,本篇内容是经典的入门例子:鸢尾花分类
- 下图是一朵鸢尾花,我们可以测量到它的四个特征:花瓣(petal)的宽和高,花萼(sepal)的 宽和高:

- 鸢尾花有三种:Setosa、Versicolor、Virginica
- 今天的实战是用前馈神经网络Feed-Forward Neural Network (FFNN)就行鸢尾花分类的模型训练和评估,在拿到150条鸢尾花的特征和分类结果后,我们先训练出模型,再评估模型的效果:

源码下载
- 本篇实战中的完整源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):
| 名称 | 链接 | 备注 |
|---|---|---|
| 项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
| git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
| git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
- 这个git项目中有多个文件夹,《DL4J实战》系列的源码在dl4j-tutorials文件夹下,如下图红框所示:

- dl4j-tutorials文件夹下有多个子工程,本次实战代码在dl4j-tutorials目录下,如下图红框:

编码
- 在dl4j-tutorials工程下新建子工程classifier-iris,其pom.xml如下:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>dlfj-tutorials</artifactId>
<groupId>com.bolingcavalry</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>classifier-iris</artifactId>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>com.bolingcavalry</groupId>
<artifactId>commons</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</dependency>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>${nd4j.backend}</artifactId>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
</dependency>
</dependencies>
</project>
上述pom.xml有一处需要注意的地方,就是${nd4j.backend}参数的值,该值在决定了后端线性代数计算是用CPU还是GPU,本篇为了简化操作选择了CPU(因为个人的显卡不同,代码里无法统一),对应的配置就是nd4j-native;
源码全部在Iris.java文件中,并且代码中已添加详细注释,就不再赘述了:
package com.bolingcavalry.classifier;
import com.bolingcavalry.commons.utils.DownloaderUtility;
import lombok.extern.slf4j.Slf4j;
import org.datavec.api.records.reader.RecordReader;
import org.datavec.api.records.reader.impl.csv.CSVRecordReader;
import org.datavec.api.split.FileSplit;
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.evaluation.classification.Evaluation;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.SplitTestAndTrain;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize;
import org.nd4j.linalg.learning.config.Sgd;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import java.io.File;
/**
* @author will (zq2599@gmail.com)
* @version 1.0
* @description: 鸢尾花训练
* @date 2021/6/13 17:30
*/
@SuppressWarnings("DuplicatedCode")
@Slf4j
public class Iris {
public static void main(String[] args) throws Exception {
//第一阶段:准备
// 跳过的行数,因为可能是表头
int numLinesToSkip = 0;
// 分隔符
char delimiter = ',';
// CSV读取工具
RecordReader recordReader = new CSVRecordReader(numLinesToSkip,delimiter);
// 下载并解压后,得到文件的位置
String dataPathLocal = DownloaderUtility.IRISDATA.Download();
log.info("鸢尾花数据已下载并解压至 : {}", dataPathLocal);
// 读取下载后的文件
recordReader.initialize(new FileSplit(new File(dataPathLocal,"iris.txt")));
// 每一行的内容大概是这样的:5.1,3.5,1.4,0.2,0
// 一共五个字段,从零开始算的话,标签在第四个字段
int labelIndex = 4;
// 鸢尾花一共分为三类
int numClasses = 3;
// 一共150个样本
int batchSize = 150; //Iris data set: 150 examples total. We are loading all of them into one DataSet (not recommended for large data sets)
// 加载到数据集迭代器中
DataSetIterator iterator = new RecordReaderDataSetIterator(recordReader,batchSize,labelIndex,numClasses);
DataSet allData = iterator.next();
// 洗牌(打乱顺序)
allData.shuffle();
// 设定比例,150个样本中,百分之六十五用于训练
SplitTestAndTrain testAndTrain = allData.splitTestAndTrain(0.65); //Use 65% of data for training
// 训练用的数据集
DataSet trainingData = testAndTrain.getTrain();
// 验证用的数据集
DataSet testData = testAndTrain.getTest();
// 指定归一化器:独立地将每个特征值(和可选的标签值)归一化为0平均值和1的标准差。
DataNormalization normalizer = new NormalizerStandardize();
// 先拟合
normalizer.fit(trainingData);
// 对训练集做归一化
normalizer.transform(trainingData);
// 对测试集做归一化
normalizer.transform(testData);
// 每个鸢尾花有四个特征
final int numInputs = 4;
// 共有三种鸢尾花
int outputNum = 3;
// 随机数种子
long seed = 6;
//第二阶段:训练
log.info("开始配置...");
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.activation(Activation.TANH) // 激活函数选用标准的tanh(双曲正切)
.weightInit(WeightInit.XAVIER) // 权重初始化选用XAVIER:均值 0, 方差为 2.0/(fanIn + fanOut)的高斯分布
.updater(new Sgd(0.1)) // 更新器,设置SGD学习速率调度器
.l2(1e-4) // L2正则化配置
.list() // 配置多层网络
.layer(new DenseLayer.Builder().nIn(numInputs).nOut(3) // 隐藏层
.build())
.layer(new DenseLayer.Builder().nIn(3).nOut(3) // 隐藏层
.build())
.layer( new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD) // 损失函数:负对数似然
.activation(Activation.SOFTMAX) // 输出层指定激活函数为:SOFTMAX
.nIn(3).nOut(outputNum).build())
.build();
// 模型配置
MultiLayerNetwork model = new MultiLayerNetwork(conf);
// 初始化
model.init();
// 每一百次迭代打印一次分数(损失函数的值)
model.setListeners(new ScoreIterationListener(100));
long startTime = System.currentTimeMillis();
log.info("开始训练");
// 训练
for(int i=0; i<1000; i++ ) {
model.fit(trainingData);
}
log.info("训练完成,耗时[{}]ms", System.currentTimeMillis()-startTime);
// 第三阶段:评估
// 在测试集上评估模型
Evaluation eval = new Evaluation(numClasses);
INDArray output = model.output(testData.getFeatures());
eval.eval(testData.getLabels(), output);
log.info("评估结果如下\n" + eval.stats());
}
}
- 编码完成后,运行main方法,可见顺利完成训练并输出了评估结果,还有混淆矩阵用于辅助分析:

- 至此,咱们的第一个实战就完成了,通过经典实例体验的DL4J训练和评估的常规步骤,对重要API也有了初步认识,接下来会继续实战,接触到更多的经典实例;
你不孤单,欣宸原创一路相伴
欢迎关注公众号:程序员欣宸
微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...
https://github.com/zq2599/blog_demos
DL4J实战之二:鸢尾花分类的更多相关文章
- DL4J实战之一:准备
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- DL4J实战之五:矩阵操作基本功
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- python机器学习实战(二)
python机器学习实战(二) 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7159775.html 前言 这篇noteboo ...
- 【深度学习系列】PaddlePaddle垃圾邮件处理实战(二)
PaddlePaddle垃圾邮件处理实战(二) 前文回顾 在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度 ...
- [Python]基于K-Nearest Neighbors[K-NN]算法的鸢尾花分类问题解决方案
看了原理,总觉得需要用具体问题实现一下机器学习算法的模型,才算学习深刻.而写此博文的目的是,网上关于K-NN解决此问题的博文很多,但大都是调用Python高级库实现,尤其不利于初级学习者本人对模型的理 ...
- (转载)Android项目实战(二十七):数据交互(信息编辑)填写总结
Android项目实战(二十七):数据交互(信息编辑)填写总结 前言: 项目中必定用到的数据填写需求.比如修改用户名的文字编辑对话框,修改生日的日期选择对话框等等.现总结一下,方便以后使用. 注: ...
- (转载)Android项目实战(二十八):Zxing二维码实现及优化
Android项目实战(二十八):Zxing二维码实现及优化 前言: 多年之前接触过zxing实现二维码,没想到今日项目中再此使用竟然使用的还是zxing,百度之,竟是如此牛的玩意. 当然,项目中 ...
- 02-15 Logistic回归(鸢尾花分类)
目录 Logistic回归(鸢尾花分类) 一.导入模块 二.获取数据 三.构建决策边界 四.训练模型 4.1 C参数与权重系数的关系 五.可视化 更新.更全的<机器学习>的更新网站,更有p ...
- 02-19 k近邻算法(鸢尾花分类)
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ ...
随机推荐
- mysql复制内容到一张新表
-- 1.复制表结构及数据到新表 CREATE TABLE 新表 SELECT * FROM 旧表 -- 2.只复制表结构到新表 CREATE TABLE 新表 SELECT * FROM 旧表 WH ...
- JobExecutionContext中的JobDataMapjob与Detail与Trigger中的JobDataMapjob
public static void main(String[] args) { //配置模式 build模式 //1.实例一个JOB JobDetail jobDetail = JobBuilder ...
- Learning ROS: Using a C++ class in Python
http://wiki.ros.org/ROS/Tutorials/Using%20a%20C%2B%2B%20class%20in%20Python This tutorial illustrate ...
- 安全强化机制——SELinux
1.基本 SELINUX 安全性概念 SELINUX(Security Enhanced Linux),意思是安全增强型Linux, 是可保护你系统安全性的额外机制 在某种程度上 , 它可以被看作是与 ...
- MySQL——优化
MySQL数据库优化: 1.优化角度 安全: 数据可持续性 性能: 数据的高性能访问 2.优化范围(优化顺序---->) (1)存储.主机和操作系统: 主机架构稳定性 I/O规划及配置 swap ...
- 网络协议之TCP和UDP
TCP/IP协议: 传输控制协议/因特网互联协议( Transmission Control Protocol/Internet Protocol),是Internet最基本.最广泛的协议.它定义了计 ...
- Spring5(五)——AOP
一.AOP 1.介绍 AOP(Aspect Oriented Programming),面向切面编程.它利用一种称为"横切"的技术,剖解开封装的对象内部,并将那些影响了多个类的公共 ...
- logstash-input-jdbc配置说明
Logstash由三个组件构造成,分别是input.filter以及output.我们可以吧Logstash三个组件的工作流理解为:input收集数据,filter处理数据,output输出数据.至于 ...
- Linux内核中断顶半部和底半部的理解
文章目录 中断上半部.下半部的概念 实现中断下半部的三种方法 软中断 软中断模版 tasklet tasklet函数模版 工作队列 工作队列函数模版 进程上下文和中断上下文 软中断和硬中断的区别 硬中 ...
- vue-自定义指令(directive )的使用方法
前言 在vue项目中我们经常使用到 v-show ,v-if,v-for等内置的指令,除此之外vue还提供了非常方便的自定义指令,供我们对普通的dom元素进行底层的操作.使我们的日常开发变得更加方便快 ...