Regularizing Deep Networks with Semantic Data Augmentation
概
通过data augments来对数据进行扩充, 可以有效提高网络的泛化性.
但是这些transformers通常只有一些旋转, 剪切等较为简单的变换, 想要施加更为复杂的语义不变变换(如切换背景), 可能就需要GAN等引入额外的网络来进行.
本文提出的ISDA算法是基于特征的变化进行的, 技能进行语义层面的变换, 又没有GAN等方法的计算昂贵的缺点.
主要内容

作者认为, 在最后的特征层, 通过增加一定的平移对应不同的语义上的变换.
但是, 作者也指明了, 并非所有的方向都是一个有意义的方向, 比如这个方向可能是戴上眼镜, 这个方向对于人来说是有意义的, 但是对于汽车飞机就没有意义了.
所以我们需要从一个有意义的分布中采样, 作者假设该分布是一个零均值的正态分布, 即
\]
于是乎, 现在的问题就是如何选择这个协方差矩阵\(\Sigma\).
就像之前讲的, 有些方向是否有意义与类别有关系, 所以不同的类别的样本会从不同的正态分布
\]
中采样.
对于每一个协方差矩阵, 作者采用online的更新方式更新:

上图是式子就是普通的协方差估计式子
\]
的online更新版本.
如果假设样本\(x\)经过encoder之后的特征为\(a\), 则其变换后的版本
\]
其中\(y\)为\(x\)的类别标签. 于是一般的对应的损失函数即为
\]
当我们令\(M\)趋于无穷大的时候,
\]
这个式子没有显示解, 故作者退而求其次, 最小化其上界.

这个证明不难, 这里就练习一下
\]
既然
\]
代码
Regularizing Deep Networks with Semantic Data Augmentation的更多相关文章
- 【论文考古】联邦学习开山之作 Communication-Efficient Learning of Deep Networks from Decentralized Data
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-Efficient Learni ...
- Communication-Efficient Learning of Deep Networks from Decentralized Data
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Proceedings of the 20th International Conference on Artificial Intell ...
- 论文解读(GraphDA)《Data Augmentation for Deep Graph Learning: A Survey》
论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, ...
- paper 147:Deep Learning -- Face Data Augmentation(一)
1. 在深度学习中,当数据量不够大时候,常常采用下面4中方法: (1)人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data ...
- Fully Convolutional Networks for Semantic Segmentation 译文
Fully Convolutional Networks for Semantic Segmentation 译文 Abstract Convolutional networks are powe ...
- Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...
- 论文笔记:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks ICML 2017 Paper:https://arxiv.org/ ...
- 【DeepLearning】Exercise: Implement deep networks for digit classification
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...
- 深度学习材料:从感知机到深度网络A Deep Learning Tutorial: From Perceptrons to Deep Networks
In recent years, there’s been a resurgence in the field of Artificial Intelligence. It’s spread beyo ...
随机推荐
- 技术管理进阶——Leader的模型、手段及思维
这里可以添加关注交流一下嘛-- 本文更多的是个人认知,有不足请批评. Case 在之前一次年底考评的时候,有一位leader将一个案例同时用到了自己和下属身上,老板发出了责问: 这个项目到底你是负责 ...
- day12 form组件
day12 form组件 今日内容 form组件前戏 form组件基本定义 form组件数据校验功能 form组件渲染标签 form组件提示信息 数据校验进阶 form组件补充 form组件源码探索 ...
- R语言学习记录(二)
4.对象改值 4.1.就地改值 比如: vec <- c(0,0,0,0,0,0,0) vec[1]<-100 #vec向量的第一个值就变为100 ####对于数据框的改值的方法,如下面的 ...
- Vue面试专题(未完)
1.谈一下你对MVVM原理的理解 传统的 MVC 指的是,用户操作会请求服务端路由,路由会调用对应的控制器来处理,控制器会获取数 据.将结果返回给前端,页面重新渲染. MVVM :传统的前端会将数 ...
- 前端必须知道的 Nginx 知识
Nginx一直跟我们息息相关,它既可以作为Web 服务器,也可以作为负载均衡服务器,具备高性能.高并发连接等. 1.负载均衡 当一个应用单位时间内访问量激增,服务器的带宽及性能受到影响, 影响大到自身 ...
- Shell脚本的条件控制和循环语句
条件判断:if语句 语法格式: if [ expression ] then Statement(s) to be executed if expression is true fi 注意:expre ...
- AOP与IOC的概念
AOP与IOC的概念(即spring的核心) a) IOC:Spring是开源框架,使用框架可以使我们减少工作量,提高工作效率并且它是分层结构,即相对应的层处理对应的业务逻辑,减少代码的耦合度.而sp ...
- Local Classes in C++
A class declared inside a function becomes local to that function and is called Local Class in C++. ...
- go goroutines 使用小结
go +方法 就实现了一个并发,但由于环境不同,需要对并发的个数进行限制,限制同一时刻并发的个数,后面称此为"并发限流". 为什么要并发限流? 虽然GO M+P+G的方式号称可以轻 ...
- "delete this" in C++
Ideally delete operator should not be used for this pointer. However, if used, then following points ...