A pure L1-norm principal component analysis
@
虽然没有完全弄清楚其中的数学内涵,但是觉得有趣,记录一下.
问题
众所周知,一般的PCA(论文中以\(L_2-PCA\)表示)利用二范数构造损失函数并求解,但是有一个问题就是会对异常值非常敏感. 所以,已经有许多的PCA开始往\(\ell_1\)范数上靠了,不过我所知道的和这篇论文的有些不同.
像是Zou 06年的那篇SPCA中:

注意到,\(\ell_1\)作用在\(\beta\)上,以此来获得稀疏化.
这篇论文似乎有些不同,从回归的角度考虑, 一般的回归问题是最小化下列损失函数:
\]
为了减小异常值的影响,改用:
\]
而作者指出,上面的问题可以利用线性规划求解:

回到PCA上,我们希望找到一个方向,样本点到此方向上的\(\ell_1\)距离之和最短(可能理解有误的).
细节
\(L_1-PCA\)的损失函数
首先,假设输入的数据\(x_i \in \mathbb{R}^m\), 并构成数据矩阵\(X \in \mathbb{R}^{n \times m}\). 首先,作者希望找到一个\(m-1\)维的子空间,而样本点到此子空间的\(\ell_1\)距离和最短. 在此之前,需要先讨论距离的计算.

从上图可以看到,一个点到一个超平面\(S\)的\(\ell_1\)距离并不像普通的欧氏距离一样,实际上,可以这么定义点到子空间的距离:
\]
假设超平面S由\(\beta^T x=0\)刻画(假设其经过原点), 则:
首先,对于一个样本点\(x_i\), 选择一个\(j\), 令\(y_i=z_i, i = \not j\), 而\(y_j\)定义为(假设\(\beta_j = \not 0\)):
\]
于是容易证明\(\beta^T y=0\), 也就是\(y \in S\).
下面证明, 如果这个\(j\)使得\(|\beta_j| \ge |\beta_i|, \forall i = \not j\), 那么\(|x-y|\)就是\(x\)的\(\ell_1\)距离. 首先证明,在只改变一个坐标的情况下是最小的, 此时:
\]
因为分子是固定的,所以分母越大的距离越短,所以在只改变一个坐标的情况下是如此,下面再利用数学归纳法证明,如果距离最短,那么必须至多只有一个坐标被改变.
\(m=2\)的时候容易证明,假设\(m=k-1\)的时候已经成立,证明\(m=k\)也成立:
如果\(x, y\)已经存在一个坐标相同,那么根据前面的假设可以推得\(m=k\)成立,所以\(x, y\)必须每个坐标都完全不同. 不失一般性,选取\(\beta_1, \beta_2\),且假设均不为0, 且\(|\beta_1| \le |\beta_2|\).
令\(y'_1=x_1, y'_2=y_2-\frac{\beta_1(x_1-y_1)}{\beta_2}\),其余部分于\(y\)保持相同.则距离产生变化的部分为:
\]
所以,新的\(y'\)有一个坐标相同,而且距离更短了,所以\(m=k\)也成立.
所以,我们的工作只需要找到最大\(|\beta_j|\)所对应的\(j\)即可.
所以,我们的损失函数为:
\]
因为比例的关系,我们可以让\(\beta_j=-1\)而结果不变:
\]
把\(x_{ij}\)看成是\(y\),那么上面就变成了一个\(\ell_1\)回归问题了. 当然我们并不知道\(j\),所以需要进行\(m\)次运算,来找到\(j^*\)使得损失函数最小. 这样,我们就找到了一个\(m-1\)维的子空间.
算法如下:

\(L_1-PCA\)算法

因为PCA的目的是寻找一个方向,而不是一个子空间,所以需要不断重复寻找子空间的操作,这个地方我没怎么弄懂,不知是否是这样:
- 找到了一个子空间
- 将数据点投影到子空间上
- 寻找新的坐标系,则数据会从\(k\)-->\(k-1\)维
- 在新的数据中重复上面的操作直至\(k=1\).
有几个问题:
投影
对应算法的第4步,其中

需要一提的是,这里应该是作者的笔误,应当为:
\]
理由有二:
首先,投影,那么至少要满足投影后的应当在子空间中才行,以3维样本为例:\(x=(x_1, x_2, x_3)^T, j=2\),
按照修改后的为:
\]
于是\(\beta^Tz=0\), 而按照原先则不成立,
其次,再后续作者给出的例子中也可以发现,作者实际上也是按照修改后的公式进行计算的.
另外,提出一点对于这个投影方式的质疑. 因为找不到其理论部分,所以猜想作者是想按照\(\ell_1\)的方式进行投影,但是正如之前讲的,\(\ell_1\)的最短距离的投影是要选择\(|\beta_j|\)最大的\(j\),而之前选择的\(j^*\)并不能保证这一点.
坐标系
论文中也有这么一段话.

既然\(\ell_1\)范数不具备旋转不变性,那么如何保证这种坐标系的选择是合适的呢,还有,这似乎也说明,我们最后选出来的方向应该不是全局最优的吧.
载荷向量
\(\alpha^k\)是第k个子空间的载荷向量,所以,所以和SPCA很大的一个区别是它并不是稀疏的.
另外,它还有一个性质,和由\(V^k\)张成的子空间正交,这点很好证明,因为\(Z^k\beta=0\).
总的来说,我觉得这个思想还是蛮有意思的,但是总觉得缺乏一点合理的解释,想当然的感觉...
A pure L1-norm principal component analysis的更多相关文章
- Robust Principal Component Analysis?(PCP)
目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...
- Principal Component Analysis(PCA) algorithm summary
Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...
- Sparse Principal Component Analysis via Rotation and Truncation
目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...
- 《principal component analysis based cataract grading and classification》学习笔记
Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...
- PCA(Principal Component Analysis)主成分分析
PCA的数学原理(非常值得阅读)!!!! PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...
- Principal Component Analysis(PCA)
Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...
- (4)主成分分析Principal Component Analysis——PCA
主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...
- Principal Component Analysis ---- PRML读书笔记
To summarize, principal component analysis involves evaluating the mean x and the covariance matrix ...
- 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...
随机推荐
- 云原生时代,为什么基础设施即代码(IaC)是开发者体验的核心?
作者 | 林俊(万念) 来源 |尔达 Erda 公众号 从一个小故事开始 你是一个高级开发工程师. 某天,你自信地写好了自动煮咖啡功能的代码,并在本地调试通过.代码合并入主干分支后,你准备把服务发布到 ...
- oracle 锁查询
--v$lock中 id1 在锁模式是 TX 时保存的是 实物id 的前2段SELECT * FROM (SELECT s.SID, TRUNC(id1 / power(2, 16)) rbs, bi ...
- Linux学习 - 分区与文件系统
一.分区类型 1 主分区:总共最多只能分四个 2 扩展分区:只能有一个(主分区中的一个分区),不能存储数据和格式化,必须再划分成逻辑分区 才 ...
- 类型类 && .class 与 .getClass() 的区别
一. 什么是类型类 Java 中的每一个类(.java 文件)被编译成 .class 文件的时候,Java虚拟机(JVM)会为这个类生成一个类对象(我们姑且认为就是 .class 文件),这个对象包含 ...
- 远程连接mysql库问题
如果你想连接你的mysql的时候发生这个错误: ERROR 1130: Host '192.168.1.3' is not allowed to connect to this MySQL serve ...
- springboot-devtools实现项目的自动重启
热部署的引入依赖: <!-- 热部署 --> <dependency> <groupId>org.springframework.boot</groupId& ...
- pipeline 结构设计
目录 一.pipeline步骤 二.案例 pipeline详解 只生成一次制品 不同环境部署 系统集成测试 指定版本部署 一.pipeline步骤 当团队开始设计第一个pipeline时,该如何下手呢 ...
- MVC中的打印功能
HTML页面: @{ Layout = "~/Views/Shared/_IframeLayout.cshtml";}@Scripts.Render(ViewBag.ScriptP ...
- [react]react创建app,路由,mobx 全教程
1.创建app, npx create-react-app my-app Cmd Copy 2.进入项目目录 cd my-app Cmd Copy 3.启用配置文件(默认是不开启配置文件的) ya ...
- JS验证身份证是否符合规则
调用isIdCardNo(num) 验证通过返回true 错误返回false function isIdCardNo(num) { var factorArr = new Array(7, 9, 1 ...