谱聚类
http://chunqiu.blog.ustc.edu.cn/?p=505
最近忙着写文章,好久不写博客了。最近看到一个聚类方法--谱聚类,号称现代聚类方法,看到它简洁的公式推导、实现代码,不禁要尝试一把。关于它的理论,google一搜有很多博客讲,这里就不赘述了,反正最后还是归结为一个SVD分解问题,参考网址如下
看到下面的图,乐了
上网搜索,看到了几个相关的工具箱,下面一一介绍:
1.这个是加利福尼亚大学一个实验室为他们的论文《Parallel Spectral Clustering in Disributed Systems》而写的测试代码,这篇文章发在IEEE Transactions on Pattern Analysis and Machine Intelligence上,机器学习方面的顶级期刊。不过看了看作者,怎么感觉都是中国人啊,下载地址见
http://alumni.cs.ucsb.edu/~wychen/sc.html#FAQ
压缩包内有Readme,有工具箱的使用介绍,不过由于是为文章效果而写的,所以感觉并不能称得上工具箱吧,我自己编了个测试例子试了试,效果、速度确实不错:
原始待聚类数据
聚类后
代码如下:
% 谱聚类算法测试
clc
clear
close all
% 构造原始数据
ang = 0:pi/200:pi/2*3;
x1 = sin(ang) + randn(size(ang))*0.1;
y1 = cos(ang) + randn(size(ang))*0.1;
x2 = 2.3*sin(ang+pi) + randn(size(ang))*0.1;
y2 = 2.3*cos(ang) + randn(size(ang))*0.1;
x3 = 6*sin(ang+pi/2*3+pi/6) + randn(size(ang))*0.1;
y3 = 5*cos(ang+pi/2*3) + randn(size(ang))*0.1;
X = [x1, x2, x3; y1, y2, y3]';
figure
plot(X(:, 1), X(:, 2), '.')
axis equal
% 谱聚类
num_neighbors = 20;
block_size = 5;
gen_nn_distance(X, num_neighbors, block_size, 0); % 计算相似矩阵,保存到NN_sym_distance.mat文件中
filename = [num2str(num_neighbors), '_NN_sym_distance'];
load(filename)
num_clusters = 3;
sigma = 10;
cluster_labels = sc(A, sigma, num_clusters); % 谱聚类
figure
plot(X(cluster_labels == 1, 1), X(cluster_labels == 1, 2), 'r.', ...
X(cluster_labels == 2, 1), X(cluster_labels == 2, 2), 'b.', ...
X(cluster_labels == 3, 1), X(cluster_labels == 3, 2), 'g.')
axis equal
2.有个matlab exchange上的工具箱,是德国斯图加特大学一个博士整齐其博士论文的研究而写的GUI,下载链接如下(压缩包内有其博士论文)
同样,Readme里有详细使用说明,只要运行MAIN.m文件即可弹出GUI。运行可能会出个警告
影响不大,Readme里是这么说的:
recommended: export_fig configured to save to pdf files (Mathworks File Exchange ID #23629)
如果你不用保存图片,不用理会。
GUI如下
对其给的twomoons的例子做测试,结果如下
额,是不是有点自己打脸的赶脚!自己给的例子,效果也不够完美。。。估计调整一些参数能得到理想的效果吧!
Matlab exchange上还有个谱聚类的文件,提供了谱聚类各种算法的简单实现,对于学习谱聚类具体实现挺有帮助!
3.很多介绍谱聚类的博客都有提到算法的matlab实现,因为实现代码太简单了,如下
% 谱聚类简单实现
function idx = spectral_clustering(W, k)
D = diag(sum(W));
L = D-W;
opt = struct('issym', true, 'isreal', true);
[V, ~] = eigs(L, D, k, 'SM', opt);
idx = kmeans(V, k);
end
谱聚类复杂的理论最终归结为代码就这几句,当然这是考虑最简化的情况,如果考虑细节,就得靠上面提到的工具箱了。对于这个代码,我做了测试,效果还行(使用第一个代码里的计算相似矩阵的函数),不过多次测试的效果说明,不同数据对效果是有影响的,有时就得不到好的分离效果。
% 谱聚类算法测试
clc
clear
close all
% 构造原始数据
ang = 0:pi/200:pi/2*3;
x1 = sin(ang) + randn(size(ang))*0.1;
y1 = cos(ang) + randn(size(ang))*0.1;
x2 = 2.3*sin(ang+pi) + randn(size(ang))*0.1;
y2 = 2.3*cos(ang) + randn(size(ang))*0.1;
x3 = 6*sin(ang+pi/2*3+pi/6) + randn(size(ang))*0.1;
y3 = 5*cos(ang+pi/2*3) + randn(size(ang))*0.1;
X = [x1, x2, x3; y1, y2, y3]';
figure
plot(X(:, 1), X(:, 2), '.')
axis equal
% 谱聚类
num_neighbors = 20;
block_size = 5;
gen_nn_distance(X, num_neighbors, block_size, 0); % 计算相似矩阵,保存到NN_sym_distance.mat文件中
filename = [num2str(num_neighbors), '_NN_sym_distance'];
load(filename)
idx = spectral_clustering(A, 3);
figure
plot(X(idx == 1, 1), X(idx == 1, 2), 'r.', ...
X(idx == 2, 1), X(idx == 2, 2), 'b.', ...
X(idx == 3, 1), X(idx == 3, 2), 'g.')
axis equal
如果对那个博士论文的例子做测试,效果如下
貌似这个图确实很难分,这个效果不如那个德国博士的效果。
% 谱聚类算法测试
clc
clear
close all
% 构造原始数据
M = csvread('twomoon-2d-50s.test.csv');
X = M(:, 2:3);
figure
plot(X(:, 1), X(:, 2), '.')
axis equal
% 谱聚类
num_neighbors = 20;
block_size = 5;
gen_nn_distance(X, num_neighbors, block_size, 0); % 计算相似矩阵,保存到NN_sym_distance.mat文件中
filename = [num2str(num_neighbors), '_NN_sym_distance'];
load(filename)
idx = spectral_clustering(A, 2);
figure
plot(X(idx == 1, 1), X(idx == 1, 2), 'r.', ...
X(idx == 2, 1), X(idx == 2, 2), 'b.')
axis equal
如果用第一个工具箱的方法再测试这个例子
效果也就那样!
% 谱聚类算法测试
clc
clear
close all
% 构造原始数据
M = csvread('twomoon-2d-50s.test.csv');
X = M(:, 2:3);
figure
plot(X(:, 1), X(:, 2), '.')
axis equal
% 谱聚类
num_neighbors = 20;
block_size = 5;
gen_nn_distance(X, num_neighbors, block_size, 0); % 计算相似矩阵,保存到NN_sym_distance.mat文件中
filename = [num2str(num_neighbors), '_NN_sym_distance'];
load(filename)
num_clusters = 2;
sigma = 10;
cluster_labels = sc(A, sigma, num_clusters); % 谱聚类
figure
plot(X(cluster_labels == 1, 1), X(cluster_labels == 1, 2), 'r.', ...
X(cluster_labels == 2, 1), X(cluster_labels == 2, 2), 'b.')
axis equal
- 谱聚类python实践
聚类后: # -*- coding: utf-8 -*-"""Created on 09 05 2017 @author: similarface"" ...
- 用scikit-learn学习谱聚类
在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在s ...
- 谱聚类(spectral clustering)原理总结
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...
- 大数据下多流形聚类分析之谱聚类SC
大数据,人人都说大数据:类似于人人都知道黄晓明跟AB结婚一样,那么什么是大数据?对不起,作为一个本科还没毕业的小白实在是无法回答这个问题.我只知道目前研究的是高维,分布在n远远大于2的欧式空间的数据如 ...
- Laplacian matrix 从拉普拉斯矩阵到谱聚类
谱聚类步骤 第一步:数据准备,生成图的邻接矩阵: 第二步:归一化普拉斯矩阵: 第三步:生成最小的k个特征值和对应的特征向量: 第四步:将特征向量kmeans聚类(少量的特征向量):
- 谱聚类Ng算法的Matlab简单实现
请编写一个谱聚类算法,实现"Normalized Spectral Clustering-Algorithm 3 (Ng 算法)" 结果如下 谱聚类算法核心步骤都是相同的: •利用 ...
- 【聚类算法】谱聚类(Spectral Clustering)
目录: 1.问题描述 2.问题转化 3.划分准则 4.总结 1.问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图 ...
- 谱聚类--SpectralClustering
谱聚类通常会先对两两样本间求相似度. 然后依据相似度矩阵求出拉普拉斯矩阵,然后将每一个样本映射到拉普拉斯矩阵特诊向量中,最后使用k-means聚类. scikit-learn开源包中已经有现成的接口能 ...
- 谱聚类(Spectral Clustering)详解
谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似 ...
随机推荐
- BZOJ 3339 && BZOJ 3585 莫队+权值分块
显然若一个数大于n就不可能是答案. #include <iostream> #include <cstring> #include <cstdio> #includ ...
- adb获取不了设备List of devices attached
方法/步骤: 首先找到手机的安装完之后的“设备的硬件id”,第一步右击我的电脑,然后找到设备管理器打开. 在设备管理器中,找到ADB driver然后点开. 然后在详细信息中,点开硬件ID,查看到我的 ...
- input点击链接另一个页面,各种操作
1.链接到某页<input type="button" name="Submit" value="确 定" class="b ...
- C++学习笔记26:泛型编程概念
一.什么是泛型编程? 泛型就是通用的型式 编写不依赖数据对象型式的代码就是泛型编程 二.为什么需要泛型编程? 函数重载,相似类定义与型式兼容性 例如:设计函数,求两个数据对象的较小值 //未明确规定参 ...
- LintCode Climbing Stairs
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- Android中ExpandableListView的使用
ExpandableListView是Android中可以实现下拉list的一个控件,具体的实现方法如下: 首先:在layout的xml文件中定义一个ExpandableListView < L ...
- .stop()
一. 在使用animate()的时候 前面需要加上.stop()来防止移进移出的山东问题. 二. 1.定义: stop() 方法为被选元素停止当前正在运行的动画. 2.语法: $(selec ...
- 解决导入myeclipse的项目注释和中文是乱码
1.先说真正解决我所遇到的问题的办法. 用记事本打开——另存为——格式改为UTF-8——保存后在myeclipse就正常显示了. 2.以下是网上找到的办法,试了一些并没有解决问题,但或许是中间必须的步 ...
- delegate和protocol
协议和代理对于一个新手来说确实不讨好理解,也有很多的iOS开发的老手对此是懂非懂的.网上的很多博文只是讲了怎么使用,并没有说的很明白.下面我谈一下我的理解. 1.你要先搞明白,协议和代理为什么会出现, ...
- PullToRefreshGridView刷新加载
<com.handmark.pulltorefresh.library.PullToRefreshGridView xmlns:ptr="http://schemas.a ...