本章是克鲁斯卡尔算法的C++实现。

目录
1. 最小生成树
2. 克鲁斯卡尔算法介绍
3. 克鲁斯卡尔算法图解
4. 克鲁斯卡尔算法分析
5. 克鲁斯卡尔算法的代码说明
6. 克鲁斯卡尔算法的源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

最小生成树

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

克鲁斯卡尔算法介绍

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。

克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

第1步:将边<E,F>加入R中。
    边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
第2步:将边<C,D>加入R中。
    上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
第3步:将边<D,E>加入R中。
    上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
第4步:将边<B,F>加入R中。
    上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
第5步:将边<E,G>加入R中。
    上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
第6步:将边<A,B>加入R中。
    上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:

在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:

(01) C的终点是F。
(02) D的终点是F。
(03) E的终点是F。
(04) F的终点是F。

关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。

克鲁斯卡尔算法的代码说明

有了前面的算法分析之后,下面我们来查看具体代码。这里选取"邻接矩阵"进行说明,对于"邻接表"实现的图在后面的源码中会给出相应的源码。

1. 基本定义

// 边的结构体
class EData
{
public:
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重 public:
EData(){}
EData(char s, char e, int w):start(s),end(e),weight(w){}
};

EData是邻接矩阵边对应的结构体。

class MatrixUDG {
#define MAX 100
#define INF (~(0x1<<31)) // 无穷大(即0X7FFFFFFF)
private:
char mVexs[MAX]; // 顶点集合
int mVexNum; // 顶点数
int mEdgNum; // 边数
int mMatrix[MAX][MAX]; // 邻接矩阵 public:
// 创建图(自己输入数据)
MatrixUDG();
// 创建图(用已提供的矩阵)
//MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
MatrixUDG(char vexs[], int vlen, int matrix[][9]);
~MatrixUDG(); // 深度优先搜索遍历图
void DFS();
// 广度优先搜索(类似于树的层次遍历)
void BFS();
// prim最小生成树(从start开始生成最小生成树)
void prim(int start);
// 克鲁斯卡尔(Kruskal)最小生成树
void kruskal();
// 打印矩阵队列图
void print(); private:
// 读取一个输入字符
char readChar();
// 返回ch在mMatrix矩阵中的位置
int getPosition(char ch);
// 返回顶点v的第一个邻接顶点的索引,失败则返回-1
int firstVertex(int v);
// 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
int nextVertex(int v, int w);
// 深度优先搜索遍历图的递归实现
void DFS(int i, int *visited);
// 获取图中的边
EData* getEdges();
// 对边按照权值大小进行排序(由小到大)
void sortEdges(EData* edges, int elen);
// 获取i的终点
int getEnd(int vends[], int i);
};

MatrixUDG是邻接矩阵对应的结构体。
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

2. 克鲁斯卡尔算法

/*
* 克鲁斯卡尔(Kruskal)最小生成树
*/
void MatrixUDG::kruskal()
{
int i,m,n,p1,p2;
int length;
int index = 0; // rets数组的索引
int vends[MAX]={0}; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边
EData *edges; // 图对应的所有边 // 获取"图中所有的边"
edges = getEdges();
// 将边按照"权"的大小进行排序(从小到大)
sortEdges(edges, mEdgNum); for (i=0; i<mEdgNum; i++)
{
p1 = getPosition(edges[i].start); // 获取第i条边的"起点"的序号
p2 = getPosition(edges[i].end); // 获取第i条边的"终点"的序号 m = getEnd(vends, p1); // 获取p1在"已有的最小生成树"中的终点
n = getEnd(vends, p2); // 获取p2在"已有的最小生成树"中的终点
// 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
if (m != n)
{
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n
rets[index++] = edges[i]; // 保存结果
}
}
delete[] edges; // 统计并打印"kruskal最小生成树"的信息
length = 0;
for (i = 0; i < index; i++)
length += rets[i].weight;
cout << "Kruskal=" << length << ": ";
for (i = 0; i < index; i++)
cout << "(" << rets[i].start << "," << rets[i].end << ") ";
cout << endl;
}

克鲁斯卡尔算法的源码

这里分别给出"邻接矩阵图"和"邻接表图"的克鲁斯卡尔算法源码。

1. 邻接矩阵源码(MatrixUDG.cpp)

2. 邻接表源码(ListUDG.cpp)

Kruskal算法(二)之 C++详解的更多相关文章

  1. Kruskal算法(三)之 Java详解

    前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的 ...

  2. Floyd算法(二)之 C++详解

    本章是弗洛伊德算法的C++实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明出处:http://www.cnblogs.c ...

  3. Dijkstra算法(二)之 C++详解

    本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ...

  4. Prim算法(二)之 C++详解

    本章是普里姆算法的C++实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http://www.cnblogs.com/sk ...

  5. 转:JAVAWEB开发之权限管理(二)——shiro入门详解以及使用方法、shiro认证与shiro授权

    原文地址:JAVAWEB开发之权限管理(二)——shiro入门详解以及使用方法.shiro认证与shiro授权 以下是部分内容,具体见原文. shiro介绍 什么是shiro shiro是Apache ...

  6. 二叉搜索树详解(Java实现)

    1.二叉搜索树定义 二叉搜索树,是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根 ...

  7. 数据结构图文解析之:二叉堆详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  8. Java进阶(三十二) HttpClient使用详解

    Java进阶(三十二) HttpClient使用详解 Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们 ...

  9. Spring Boot 启动(二) 配置详解

    Spring Boot 启动(二) 配置详解 Spring 系列目录(https://www.cnblogs.com/binarylei/p/10198698.html) Spring Boot 配置 ...

随机推荐

  1. iptables 四表五链

    netfilter/iptables IP 信息包过滤系统是一种功能强大的工具,可用于添加.编辑和除去规则,这些规则是在做信息包过滤决定时,防火墙所遵循和组成的规则.这些规则存储在专用的信息包过滤表中 ...

  2. Android学习笔记之消息机制

    Android的消息机制主要是指Handler的运行机制以及Handler所附带的MessageQueue和Looper的工作过程.   1.为什么要使用Handler? Android规定访问UI只 ...

  3. [ASE]项目介绍及项目跟进——TANK BATTLE·INFINITE

    童年的记忆,大概是每周末和小伙伴们围坐在电视机前,在20来寸的电视机屏幕里守卫着这个至今都不知道是什么的白色大鸟. 当年被打爆的坦克数量估计也能绕地球个三两圈了吧. 十几年过去了,游戏从2D-3D,画 ...

  4. EQueue - 一个C#写的开源分布式消息队列的总体介绍

    前言 本文想介绍一下前段时间在写enode时,顺便实现的一个分布式消息队列equeue.这个消息队列的思想不是我想出来的,而是通过学习阿里的rocketmq后,自己用c#实现了一个轻量级的简单版本.一 ...

  5. 【Bugly干货分享】一起用 HTML5 Canvas 做一个简单又骚气的粒子引擎

    Bugly 技术干货系列内容主要涉及移动开发方向,是由Bugly邀请腾讯内部各位技术大咖,通过日常工作经验的总结以及感悟撰写而成,内容均属原创,转载请标明出处. 前言 好吧,说是“粒子引擎”还是大言不 ...

  6. Java虚拟机10:类加载器

    类与类加载器 虚拟机设计团队把类加载阶段张的"通过一个类的全限定名来获取此类的二进制字节流"这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需要的类.实现这 ...

  7. dojo/dom-style样式操作学习笔记

    基础总结 一个元素的样式信息由三个来源根据层叠规则确定.三个来源分别是: 由DOM元素style特性设置的内联样式 由style元素中嵌入的样式规则 由link元素引入的外部样式表 元素的样式 任何支 ...

  8. InnoSetup 如何获取安装程序的路径?

    两个常量可以使用: {srcexe} 安装程序执行文件的路径.      {src} 安装程序所在路径. path := ExpandConstant('{srcexe}');

  9. 项目八:团队项目——Alpha阶段项目总结

    1.项目的预期目标 a.完成游戏的基本功能 b.游戏难度的玩家手动调节 c.游戏能够良好的运行完成 与前期的需求分析对比: 第一点不同是游戏的难度调节,原来是想通过选择难度来调节的,但由于难度的分层上 ...

  10. JavaScript函数编程-Ramdajs

    在JavaScript语言世界,函数是第一等公民.JavaScript函数是继承自Function的对象,函数能作另一个函数的参数或者返回值使用,这便形成了我们常说的高阶函数(或称函数对象).这就构成 ...