N个节点的二叉树有多少种形态
来源:http://www.cnblogs.com/ShaneZhang/p/4102581.html
这是一道阿里的面试题。其实算不上新鲜,但是我之前没关注过,如今碰到了,就顺便探讨下这个问题吧:)
拿到这个题,首先想到的是直接写出表达式肯定不行,所以有必要从递推入手。由特殊到一般,归纳法么~而且二叉树离不开递推这个尿性。。。
先考虑只有一个节点的情形,设此时的形态有f(1)种,那么很明显f(1)=1
如果有两个节点呢?我们很自然想到,应该在f(1)的基础上考虑递推关系。那么,如果固定一个节点后,有两种情况,一是左子树还剩一个节点,此刻类型数量为f(1),第二种情况是右子树生一个节点,此刻类型数量为f(1),固有f(2) = f(1) + f(1)
如果有三个节点呢?我们需要考虑固定两个节点的情况么?当然不行,为什么?
因为当节点数量大于等于2时,无论你如何固定,其形态必然有多种,而在这多种基础之上你如何安排后续剩下的节点呢?所以必须挑出这个误区。
回到二叉树的定义,二叉树本质上就是一个递归的形式,左子树,右子树,根节点。所以根节点应该不变,需要递归处理的是左右子树。
也就是说,还是考虑固定一个节点,即根节点。好的,按照这个思路,还剩2个节点,那么左右子树的分布情况为2=0+2=1+1=2+0。
所以有3个节点时,递归形式为f(3)=f(2) + f(1)*f(1) + f(2). (注意这里的乘法,因为左右子树一起组成整棵树,根据排列组合里面的乘法原理即可得出)
那么有n个节点呢?我们固定一个节点,那么左右子树的分布情况为n-1=n-1 + 0 = n-2 + 1 = ... = 1 + n-2 = 0 + n-1
OK。递归表达式出来了f(n) = f(n-1) + f(n-2)f(1) + f(n-3)f(2) + ... + f(1)f(n-2) + f(n-1)
观察一下这个表达式,嗯,和我们之前见过的递归表达有一点区别,递推层级为n的时候,更多的是考虑前一步(n-1),或者前两步(n-1)和(n-2)。
但是这里却考虑到所有的情况,即1到n-1。
最后说明一下,这个表达式有一个学名,叫做Catalan数。上面我们没有定义f(0)。如果把f(0)也考虑进去,显然没有节点也只有一种情况,即f(0)=1
标准表达式为f(n) = f(n-1)f(0) + f(n-2)f(1) + f(n-3)f(2) + ... + f(1)f(n-2) + f(n-1)f(0)
前几个数为1,1,2,5,14,42,132。
此外,还有一个通项公式为1/(n+1) * C(n, 2n) = C(n, 2n) - C(n-1, 2n) , n = 0,1,2,...
有兴趣的同学可以参考组合数学相关书籍,这里就不累述其证明和推导了。
N个节点的二叉树有多少种形态的更多相关文章
- N个节点的二叉树有多少种形态(卡特兰数)
N个节点的二叉树有多少种形态 这是一道阿里的面试题.其实算不上新鲜,但是我之前没关注过,如今碰到了,就顺便探讨下这个问题吧:) 拿到这个题,首先想到的是直接写出表达式肯定不行,所以有必要从递推入手 ...
- 【2013微软面试题】输出节点数为n的二叉树的所有形态
转自:http://blog.csdn.net/monsterxd/article/details/8449005 /* * 题意,求节点数为n的二叉树的所有形态,先要想个方式来唯一标示一棵二叉树 ...
- 二叉树3种递归和非递归遍历(Java)
import java.util.Stack; //二叉树3种递归和非递归遍历(Java) public class Traverse { /******************一二进制树的定义*** ...
- Unique Binary Search Trees I&II——给定n有多少种BST可能、DP
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- n个元素的入栈顺序有多少种出栈顺序?
问题:w1.w2.w3.w4.w5,5个元素将会按顺序入栈,求出栈顺序有多少种情况. 先写一下结论方便记忆: 1个元素:1种 2个元素:2种 3个元素:5种 4个元素:14种 5个元素:42种 简单的 ...
- jQuery插件开发的五种形态[转]
这篇文章主要介绍了jQuery插件开发的五种形态小结,具体的内容就是解决javascript插件的8种特征,非常的详细. 关于jQuery插件的开发自己也做了少许研究,自己也写过多个插件,在自己的团队 ...
- N个数依次入栈,出栈顺序有多少种
题目:N个数依次入栈,出栈顺序有多少种? 首先介绍一下卡特兰数:卡特兰数前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 2 ...
- PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?
首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...
- 从(0,0)到(m,n),每次走一步,只能向上或者向右走,有多少种路径走到(m,n)
body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...
随机推荐
- 如何布局包含Image和Title的UIButton
UIButton中的titleEdgeInsets和imageEdgeInsets可以管理button中image和title的布局.如果对其理解不够深入,用纯数字进行布局管理,经过不断的调试,还是能 ...
- [软件架构]模块化编程思想及(C++)实践
Repost 内容简介: 模块化思想 模块的构成 模块的管理 模块化实践 定义模块结构 声明模块对象 定义模块列表 模块列表对象 模块化思想 1. 将系统分成很多的模块,模块内部关注自身需要实 ...
- Windows 10和Visual Studio 2015 能给.Net方向的开发从业者带来什么?
.Net 多年前我们选择了你,现在在当前的移动互联网热火朝天的时代,你能给我们什么样的惊喜?面对IOS和android的势头,windows的移动端能否实现三国鼎立? windows 10 号称统一各 ...
- 易图软件之EaseMap Desktop 1.0发布
概述 易图软件之EaseMap Desktop 1.0是一款基于arcgis runtime for wpf开发的地图编辑软件. 软件代码编写历时1个月终于完成. 目前这个版本的功能包括: 地图基本操 ...
- 《HP大规模敏捷开发实践》读书笔记
读这本书的心得,敏捷是实践出来的,哪怕不懂srcum**等方法,只要坚持心中的价值观,朝一个方向改进,哪怕不能“任何时候都拥有符合发布要求的代码”,今天比昨天好,也是成功. 通过业务分析确定开 ...
- easyui datebox 扩展清空按钮及日期判断
<input id="EndHavDate" class="easyui-datebox" data-options="prompt:'请选择结 ...
- spring简单介绍
1.spring 的核心技术 IOC(控制翻转)和aop(切面编程) IOC容器是一种设计模式,可以说是工厂模式的升华.它有多种实现方法,其中主要是依赖注入. aop是一种设计思想,通常的功能包括日志 ...
- 【CSS】梯形、平行四边形导航条与毛玻璃效果【转】
转载出处:http://www.cnblogs.com/Uncle-Keith/p/5943158.html 代码部分有小改动. 导航条对于每一个Web前端攻城狮来说并不陌生,但是毛玻璃可能会相对陌生 ...
- Java的数组长度无需编译指定,因为它是对象
大家可以看从Thinking in Java中摘出来的代码理解一下,甚至.多维数组的子数组无须等长 //: MultiDimArray.java// Creating multidimensional ...
- jsp的九大内置对象和四大作用域(转)
定义:可以不加声明就在JSP页面脚本(Java程序片和Java表达式)中使用的成员变量 JSP共有以下9种基本内置组件(可与ASP的6种内部组件相对应): 1.request对象(作用域) 客户端的 ...