Adding New Machine

Problem Description
Incredible Crazily Progressing Company (ICPC) suffered a lot with the low speed of procedure. After investigation, they found that the bottleneck was at Absolutely Crowded Manufactory (ACM). In oder to accelerate the procedure, they bought a new machine for
ACM. But a new problem comes, how to place the new machine into ACM? 



ACM is a rectangular factor and can be divided into W * H cells. There are N retangular old machines in ACM and the new machine can not occupy any cell where there is old machines. The new machine needs M consecutive cells. Consecutive cells means some adjacent
cells in a line. You are asked to calculate the number of ways to choose the place for the new machine. 
 
Input
There are multiple test cases (no more than 50). The first line of each test case contains 4 integers W, H, N, M (1 ≤ W, H ≤ 107, 0 ≤ N ≤ 50000, 1 ≤ M ≤ 1000), indicating the width and the length of the room, the number of old machines and the size
of the new machine. Then N lines follow, each of which contains 4 integers Xi1, Yi1, Xi2 and Yi2 (1 ≤ Xi1 ≤ Xi2 ≤ W, 1 ≤ Yi1 ≤ Yi2 ≤ H), indicating the coordinates of the
i-th old machine. It is guarantees that no cell is occupied by two old machines. 
 
Output
Output the number of ways to choose the cells to place the new machine in one line. 
 
Sample Input
3 3 1 2
2 2 2 2
3 3 1 3
2 2 2 2
2 3 2 2
1 1 1 1
2 3 2 3
 
Sample Output
8
4
3
 
Author
GUAN, Yao
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  4056 4059 4053 4057 4051 
 

题目大意:

w*h的格子,如今有n个矩形上已经摆放了东西,如今你要放一个东西长度为m,问你有多少种方法?

解题思路:

枚举无用的情况,假设东西横着放

(1)假设碰到障碍物,也就是假设 某个东西占着Xi1,Yi1,Xi2,Yi2,那么max(xi1+1-m,0) , x2 y1y2这片矩形区域就不能放东西。

(2)还有就是被墙当着,也就是max(0,w+1-m),w,0,h这片矩形区域就不能放东西。

假设竖着放,也是差点儿相同的。

坑点:假设m==1,也就是横着和竖着是一样的情况,仅仅需考虑一种,我就是这被坑了,弹了20遍。

解题代码:

#include <iostream>
#include <vector>
#include <cmath>
#include <map>
#include <cstdio>
#include <algorithm>
using namespace std; typedef long long ll; const int maxn=51000;
struct node{
int l,r,pos,c;
node(int l0=0,int r0=0,int pos0=0,int c0=0){
l=l0,r=r0,pos=pos0;c=c0;
}
friend bool operator < (node a,node b){
return a.pos<b.pos;
}
}; struct rec{
int x1,y1,x2,y2;
}d[maxn]; vector <node> v;
int w,h,m,n;
vector <int> c;
map <int,int> mp; struct Tree{
int l,r,cover,len;
}tree[8*maxn]; void build(int l,int r,int k){
tree[k].l=l;
tree[k].r=r;
tree[k].len=0;
tree[k].cover=0;
if(l+1>=r) return;
int mid=(l+r)>>1;
build(l,mid,k<<1);
build(mid,r,k<<1|1);
} void pushup(int k){
if(tree[k].cover>0) tree[k].len=c[tree[k].r]-c[tree[k].l];
else if(tree[k].l+1==tree[k].r) tree[k].len=0;
else tree[k].len=tree[k<<1].len+tree[k<<1|1].len;
} void insert(int l,int r,int k,int c0){
if(l<=tree[k].l && tree[k].r<=r){
tree[k].cover+=c0;
}
else{
int mid=(tree[k].l+tree[k].r)>>1;
if(r<=mid) insert(l,r,k<<1,c0);
else if(l>=mid) insert(l,r,k<<1|1,c0);
else{
insert(l,mid,k<<1,c0);
insert(mid,r,k<<1|1,c0);
}
}
pushup(k);
} ll getans(){
if(v.size()<=0) return (ll)w*(ll)h;
c.clear();
mp.clear();
sort(v.begin(),v.end());
for(int i=0;i<v.size();i++){
mp[v[i].l]=i;
mp[v[i].r]=i;
}
for(map <int,int>::iterator it=mp.begin();it!=mp.end();it++){
it->second=c.size();
c.push_back(it->first);
}
ll ret=0;
build(0,c.size()-1,1);
insert(mp[v[0].l],mp[v[0].r],1,v[0].c);
for(int i=1;i<v.size();i++){
ret+=(ll)(v[i].pos-v[i-1].pos)*(ll)tree[1].len;
insert(mp[v[i].l],mp[v[i].r],1,v[i].c);
}
return (ll)w*(ll)h-ret;
} void solve(){
v.clear();
for(int i=0;i<n;i++){
v.push_back(node(max(d[i].x1+1-m,0),d[i].x2,d[i].y1,1));
v.push_back(node(max(d[i].x1+1-m,0),d[i].x2,d[i].y2,-1));
}
if(m>1){
v.push_back(node(max(0,w+1-m),w,0,1));
v.push_back(node(max(0,w+1-m),w,h,-1));
} ll ans=getans(); if(m==1){
printf("%I64d\n",ans);
return;
} v.clear();
for(int i=0;i<n;i++){
v.push_back(node(max(d[i].y1+1-m,0),d[i].y2,d[i].x1,1));
v.push_back(node(max(d[i].y1+1-m,0),d[i].y2,d[i].x2,-1));
}
if(m>1){
v.push_back(node(max(0,h+1-m),h,0,1));
v.push_back(node(max(0,h+1-m),h,w,-1));
}
ans+=getans();
printf("%I64d\n",ans);
} int main(){
while(scanf("%d%d%d%d",&w,&h,&n,&m)!=EOF){
for(int i=0;i<n;i++){
scanf("%d%d%d%d",&d[i].x1,&d[i].y1,&d[i].x2,&d[i].y2);
d[i].x1--;d[i].y1--;
}
solve();
}
return 0;
}

HDU 4052 Adding New Machine(矩形面积并)的更多相关文章

  1. HDU 4052 Adding New Machine (线段树+离散化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4052 初始给你w*h的矩阵,给你n个矩形(互不相交),按这些矩形尺寸把初始的矩形扣掉,形成一个新的'矩 ...

  2. [HDU 4419] Colourful Rectangle (扫描线 矩形面积并)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4419 题目大意:比矩形面积并多了颜色,问染成的每种颜色的面积. 矩形面积并的扫描线维护的是长度,这道题 ...

  3. hdu 1542 Atlantis(求矩形面积并)

    分别记录x坐标和y坐标,将其分别按照从左到有的方向排序.然后对于一个输入的矩形的x,y坐标范围内的下标进行标记.以两个相邻的坐标为最小单位分割图形,最后求总面积. #include<stdio. ...

  4. (HDU 1542) Atlantis 矩形面积并——扫描线

    n个矩形,可以重叠,求面积并. n<=100: 暴力模拟扫描线.模拟赛大水题.(n^2) 甚至网上一种“分块”:分成n^2块,每一块看是否属于一个矩形. 甚至这个题就可以这么做. n<=1 ...

  5. HDU Atlantis 线段树 表达区间 矩形面积相交

    http://acm.hdu.edu.cn/showproblem.php?pid=1542 我的做法是把x轴的表示为线段,然后更新y 不考虑什么优化的话,开始的时候,把他们表达成线段,并按y排序,然 ...

  6. HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)

    链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...

  7. 【HDU 1542】Atlantis(线段树+离散化,矩形面积并)

    求矩形面积并,离散化加线段树. 扫描线法: 用平行x轴的直线扫,每次ans+=(下一个高度-当前高度)*当前覆盖的宽度. #include<algorithm> #include<c ...

  8. POJ 1151 / HDU 1542 Atlantis 线段树求矩形面积并

    题意:给出矩形两对角点坐标,求矩形面积并. 解法:线段树+离散化. 每加入一个矩形,将两个y值加入yy数组以待离散化,将左边界cover值置为1,右边界置为2,离散后建立的线段树其实是以y值建的树,线 ...

  9. hdu 1542 扫描线求矩形面积的并

    很久没做线段树了 求矩形面积的并分析:1.矩形比较多,坐标也很大,所以横坐标需要离散化(纵坐标不需要),熟悉离散化后这个步骤不难,所以这里不详细讲解了,不明白的还请百度2.重点:扫描线法:假想有一条扫 ...

随机推荐

  1. POJ 1745 Divisibility (线性dp)

    Divisibility Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10598   Accepted: 3787 Des ...

  2. cocos2d-x—使用shader使图片背景透明

    这里用shader处理了像素,使黑色背景透明,直接上代码 ShaderSprite.h [cpp] view plaincopyprint? #ifndef __TestShader__ShaderS ...

  3. HDU3988-Harry Potter and the Hide Story(数论-质因数分解)

    Harry Potter and the Hide Story Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 ...

  4. Sizzle.filter [ 源代码分析 ]

    最近的研究已Sizzle选择,对于原理中我们也不得不佩服! Sizzle中间filter办法.主要负责元素表达式过滤块的集合,在内部的方法调用Sizzle.selector.fitler滤波操作的操作 ...

  5. oracle的分页查询碰到的一个小问题

    订单表.与订单信息表(多个订单信息列有同一个订单id) 查出全部订单以及其信息并依照订单分页 select * from( select a. * , (DENSE_RANK() OVER(ORDER ...

  6. 他们控制的定义(2.3):SurfaceView和SurfaceHolder

    这个例子需求和流程: Activity加载它们的定义SurfaceView-> SurfaceView 构造函数:初始化刷.传感器.SurfaceHolder和注册SurfaceHolder的监 ...

  7. JAVA必备——Struts

    在我们的开发中,有一个经典的框架,就是SSH,他们各自是:Struts,Spring,Hibernate,我们队他们神交已久,在曾经的博客中我介绍了Hibernate,今天我们也逐步揭开Struts的 ...

  8. mySQl该数据库不能将中国的做法

    1. 更改MySQL安装文件夹(C:\Program Files\MySQL\MySQL Server 5.5)的my.ini文件 设置: default-character-set=utf8 cha ...

  9. mysql三学习sql声明学习

    SQL 是一门 ANSI 的标准计算机语言,用来訪问和操作数据库系统.SQL 语句用于取回和更新数据库中的数据.SQL 可与数据库程序协同工作,比方MySQL. MS Access.DB2.Infor ...

  10. JavaScript之包装对象

    JavaScript对象是一种复合值:它是属性和已命名值的集合.通过"."符号来引用属性值.当属性值是一个函数时,称为方法. ①一段你常用但却未必明白其真正底层原理的代码: var ...