codevs1028花店橱窗布置(费用流)
这几天刚学了费用流,找到了这道题来练一练手。
题目:
假设以最美观的方式布置花店的橱窗,有F束花,V个花瓶,我们用美学值(一个整数)表示每束花放入每个花瓶所产生的美学效果。为了取得最佳的美学效果,必须使花的摆放取得最大的美学值。
第一行为两个整数F,V(F<=V<=100)
接下来F行每行V个整数,第i行第j个数表示第i束花放入第j个花瓶的美学值。
一个整数,即最大美学值。
2 2
10 0
5 2
12
这道题很明显是二分图的最大权匹配,可以用最大费用最大流来做。做法:首先先建图,在源点到每束花之间连一条流量为1,花费0为的点(每束花只能用一次),在每个花屏到汇点之间连一条流量为1,花费为0的边(每个花瓶只能用一次),然后再在每束花和每个花瓶之间连一条流量为1,权值为这种匹配的美学值的边;然后就用spfa找增广路,建反向边时,反向边的流量是这条增广路的流量,花费是原边的花费的相反数。
一开始写的时候受了最大流的影响,也像最大流那样建了分层图,于是WA了两次也找不出错。后来把分层图删掉才能AC。其实分层图的作用就是避免出现环造成死循环,而用spfa来找增广路,就已经避免了这个问题,反而会把原图中的一些边删掉,所以费用流中千万不要用分层图。
代码:
var a,c:array[..,..]of longint;//a是原图,c是花费的图
fa,d:array[..]of longint;//fa[i]是在到i的最短路径上i的前一个点(前驱结点),d[i]是到i的最短路径的距离
b:array[..]of boolean;//记录是否在队列中
q:array[..]of longint;//队列
n,m,i,j,k,p,t,h,sum:longint;
procedure spfa(s:longint);//spfa模板
var i,h,t:longint;
begin
for i:= to n do begin
d[i]:=-<<; b[i]:=true;//初始化
end;
h:=; t:=; q[]:=s; d[s]:=; b[s]:=false; fa[s]:=-;//初始化2
repeat
for i:= to n do
if(a[q[h],i]>)and(d[q[h]]+c[q[h],i]>d[i])then begin//判断是否有边,是否更优
d[i]:=d[q[h]]+c[q[h],i]; fa[i]:=q[h];//更新距离
if b[i] then begin
inc(t); q[t]:=i; b[i]:=false;//入队
end;
end;
b[q[h]]:=true; inc(h);//出队
until h>t;
end;
function flow(s,t:longint):longint;
var p,min:longint;
begin
spfa(s);
if d[t]=-<< then exit();//判断是否有增广路
p:=t; min:=<<;
while fa[p]>= do begin
if min>a[fa[p],p] then min:=a[fa[p],p];//从汇点访问到源点,计算流量
p:=fa[p];
end;
p:=t;
while fa[p]>= do begin
c[p,fa[p]]:=-c[fa[p],p];//建反向边1
a[fa[p],p]:=a[fa[p],p]-min; a[p,fa[p]]:=a[p,fa[p]]+min;//建反向边2
p:=fa[p];
end;
sum:=sum+d[t];//加上这次增广的花费,更新答案
exit(min);
end;
begin
read(n,m);
for i:= to n do begin
a[,i]:=; c[,i]:=;//建图1
end;
for i:= to m do begin
a[i+n,n+m+]:=; c[i+n,n+m+]:=;//建图2
end;
for i:= to n do
for j:= to m do begin
read(k); a[i,n+j]:=; c[i,n+j]:=k;//建图3
end;
n:=n+m+; sum:=; k:=;
while k> do k:=flow(,n);//一行费用流
writeln(sum);//输出最大美学值
end.
codevs1028花店橱窗布置(费用流)的更多相关文章
- [IOI1999]花店橱窗布置(DP路径记录)
题目:[IOI1999]花店橱窗布置 问题编号:496 题目描述 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,从左到右按1到V顺序编号,V ...
- 洛谷P1854 花店橱窗布置 分析+题解代码
洛谷P1854 花店橱窗布置 分析+题解代码 蒟蒻的第一道提高+/省选-,纪念一下. 题目描述: 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定 ...
- RQNOJ PID496/[IOI1999]花店橱窗布置
PID496 / [IOI1999]花店橱窗布置 ☆ 题目描述 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,从左到右按1到V顺序 编号 ...
- 【2018寒假集训 Day2】【2019.5.11更新】【动态规划】花店橱窗布置(FLOWER)
花店橱窗布置(FLOWER) 提交文件名:flower 问题描述: 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,从左到右按1到V顺序编号, ...
- 【codevs1028】花店橱窗布置(费用流)
这几天刚学了费用流,找到了这道题来练一练手. 题目: 题目描述 Description 假设以最美观的方式布置花店的橱窗,有F束花,V个花瓶,我们用美学值(一个整数)表示每束花放入每个花瓶所产生的美学 ...
- codevs 1028 花店橱窗布置
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 假设以最美观的方式布置花店的橱窗,有F束花,V个花瓶,我们用美学值(一个整 ...
- AC日记——花店橱窗布置 codevs 1028
题目描述 Description 假设以最美观的方式布置花店的橱窗,有F束花,V个花瓶,我们用美学值(一个整数)表示每束花放入每个花瓶所产生的美学效果.为了取得最佳的美学效果,必须使花的摆放取得最大的 ...
- wikioi 1028 花店橱窗布置 最大权匹配
中文题意不描述. 链接:http://wikioi.com/problem/1028/ 这题一开始很裸的最大权二分匹配.但是原来没有接触过,KM的这个最大权不大会.然后一开始以为用最大费用最大流直接就 ...
- [动态规划]P1854 花店橱窗布置
题目描述 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,从左到右按1到V顺序编号,V是花瓶的数目.花束可以移动,并且每束花用1到F的整数标识 ...
随机推荐
- HOJ:2031 进制转换
进制转换 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- c#中关于大对象数组的一些心得
在之前的一个课题中,曾经需要用到2W行*3W列的float类型矩阵(大约2.4G),由于无法创建大于2G的对象,当时采用了一些取巧的办法回避了,并没有拿出精力来研究一下这个问题.今天和公司的张哥(大牛 ...
- Windows 8 Store Apps
重新想象 Windows 8 Store Apps 系列文章索引 Posted on 2013-11-18 08:33 webabcd 阅读(672) 评论(3) 编辑 收藏 [源码下载] 重新想象 ...
- WinDBG调试.NET程序示例
WinDBG调试.NET程序示例 好不容易把环境打好了,一定要试试牛刀.我创建了一个极其简单的程序(如下).让我们期待会有好的结果吧,阿门! using System; using System.Co ...
- angular实战
目录 [mvvm] controller scope module router directive 项目实战
- 对Conjugate Gradient 优化的简单理解
对Conjugate Gradient 优化的简单理解) 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解) 数学优化方法在机器学习算法中至关重要,本篇博客 ...
- [读书心得] .NET中 类型,对象,线程栈,托管堆在运行时的关系
.NET中 类型,对象,线程栈,托管堆 在运行时的关系 The Relationship at Run Time between Types,Objects,A Thread's Stack,and ...
- JAVA多线程经典问题 -- 生产者 消费者
工作2年多来一直也没有计划写自己的技术博客,最近辞职在家翻看<thingking in JAVA>,偶尔看到了生产者与消费者的一个经典的多线程同步问题.本人在工作中很少使用到多线程以及高并 ...
- 编写类String 的构造函数、析构函数和赋值函数
编写类String 的构造函数.析构函数和赋值函数,已知类String 的原型为:class String{public:String(const char *str = NULL); // 普通构造 ...
- javascript操作写入txt文件及消息: Automation 服务器不能创建对象问题
简单的写入txt代码: function WriteTxt() { var fso, tf; fso = new ActiveXObject("Scripting.Fil ...