zoj 3822 Domination (可能性DP)
Domination
Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge
Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows
and Mcolumns.
Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is
at least one chess piece in every row. Also, there is at least one chess piece in every column.
"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help
him.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
There are only two integers N and M (1 <= N, M <= 50).
Output
For each test case, output the expectation number of days.
Any solution with a relative or absolute error of at most 10-8 will be accepted.
Sample Input
2
1 3
2 2
Sample Output
3.000000000000
2.666666666667
题意:向一个N*M的棋盘里随机放棋子,每天往一个格子里放一个。求每一行每一列都有棋子覆盖的天数。
思路:开一个三维数组,dp[i][j][k]:有i行j列被k个棋子覆盖的概率。
则dp[i+1][j][k+1]=dp[i][j][k]*(n-i)*j/(n*m-k);
//添加一个棋子,多覆盖一行
dp[i][j+1][k+1]=dp[i][j][k]*i*(m-j)/(n*m-k);
//添加一个棋子,多覆盖一列
dp[i+1][j+1][k+1]=dp[i][j][k]*(n-i)*(m-j)/(n*m-k);
//添加一个棋子,多覆盖一行及一列
dp[i][j][k+1]=dp[i][j][k]*(i*j-k)/(n*m-k);
//添加一个棋子,行、列数没有添加
则ans=dp[n][m][k]*k,(k=0...n*m).
//当i==n&&j==m时特殊处理,最后一项去掉。
易知dp[0][0][0]=1;
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 55
#define LL __int64
const int inf=0x1f1f1f1f;
const double eps=1e-10;
double dp[N][N][N*N];
int n,m;
void inti()
{
int i,j,k;
for(i=0;i<=n;i++)
{
for(j=0;j<=m;j++)
{
for(k=0;k<=n*m;k++)
dp[i][j][k]=0;
}
}
}
int main()
{
int i,j,k,T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
inti();
dp[0][0][0]=1;
int tt=n*m;
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
for(k=0;k<=n*m;k++)
{
if(i==n&&j==m)
dp[i][j][k]=(dp[i-1][j][k-1]*(n-i+1)*j+dp[i][j-1][k-1]*i*(m-j+1)+dp[i-1][j-1][k-1]*(n-i+1)*(m-j+1))/(tt-k+1);
else
dp[i][j][k]=(dp[i-1][j][k-1]*(n-i+1)*j+dp[i][j-1][k-1]*i*(m-j+1)+dp[i-1][j-1][k-1]*(n-i+1)*(m-j+1)+dp[i][j][k-1]*(i*j-k+1))/(tt-k+1);
}
}
}
double ans=0;
for(i=0;i<=tt;i++)
ans+=dp[n][m][i]*i;
printf("%.9f\n",ans);
}
return 0;
}
zoj 3822 Domination (可能性DP)的更多相关文章
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- ZOJ 3822 Domination 概率dp 难度:0
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...
- zoj 3822 Domination 概率dp 2014牡丹江站D题
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...
- zoj 3822 Domination (概率dp 天数期望)
题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...
- ZOJ 3822 Domination(概率dp)
一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...
- ZOJ 3822 Domination(概率dp 牡丹江现场赛)
题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...
- ZOJ - 3822 Domination (DP)
Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess ...
- zoj 3822 Domination(dp)
题目链接:zoj 3822 Domination 题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望. 解题思路:大白书上概率那一张有一 ...
- zoj 3822(概率dp)
ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Ju ...
随机推荐
- 使用python进行加密解密AES算法
使用python进行加密解密AES算法-代码分享-PYTHON开发者社区-pythoner.org 使用python进行加密解密AES算法 TY 发布于 2011-09-26 21:36:53,分类: ...
- 联系人数据库设计之ContactsTransaction
不当之处,请雅正. 请自行下载android源代码 package com.android.providers.contacts; import com.google.android.collect. ...
- Mahout-Pearson correlation的实现
计算公式: 并通过以下代码对Mahout in Action的结果进行了验证: 代码例如以下: ` package com.example.mahout; public class TestColl ...
- hdu 1262 寻找素数对 数论 打表。
寻找素数对 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- MMA7455加速度传感器測量角度
使用加速度传感器应该注意几点: 第一:确保你的IIC是正确的: 第二,首先必须校准系统,校准方法,例如以下:将7455平放,保证z轴向下,这是假设系统是Ok的,那么x轴输出为0,y轴输出为0,z轴输出 ...
- 打印org.eclipse.xsd.XSDSchema对象
由于网上关于Eclipse XSD的中文资料比較少,可是有的时候.我们须要使用Eclipse XSD的API去构造或者改动一个XSD文件. 那么当我们创建了org.eclipse.xsd.XSDSch ...
- ASP.NET - 在线编辑器(KindEditor)
效果: 项目结构: 前端代码: <%@ Page Language="C#" AutoEventWireup="true" CodeFile=" ...
- POJ 2442 Squence (STL heap)
题意: 给你n*m的矩阵,然后每行取一个元素,组成一个包含n个元素的序列,一共有n^m种序列, 让你求出序列和最小的前n个序列的序列和. 解题思路: 1.将第一序列读入seq1向量中,并按升序排序. ...
- java面向对象下:Java数据库编程
19.Java数据库编程: JDBC概述: JDBC(Java Database Connection)是java中提供的一套数据库编程API,它定义了一套用来访问数据库的标准Java类 ...
- USM锐化之openCV实现,附赠调整对比度函数
源地址:http://www.cnblogs.com/easymind223/archive/2012/07/03/2575277.html 常用Photoshop的玩家都知道Unsharp Mask ...