Drivers Dissatisfaction
4 seconds
256 megabytes
standard input
standard output
In one kingdom there are n cities and m two-way roads. Each road connects a pair of cities, and for each road we know the level of drivers dissatisfaction — the value wi.
For each road we know the value ci — how many lamziks we should spend to reduce the level of dissatisfaction with this road by one. Thus, to reduce the dissatisfaction with the i-th road by k, we should spend k·ci lamziks. And it is allowed for the dissatisfaction to become zero or even negative.
In accordance with the king's order, we need to choose n - 1 roads and make them the main roads. An important condition must hold: it should be possible to travel from any city to any other by the main roads.
The road ministry has a budget of S lamziks for the reform. The ministry is going to spend this budget for repair of some roads (to reduce the dissatisfaction with them), and then to choose the n - 1 main roads.
Help to spend the budget in such a way and then to choose the main roads so that the total dissatisfaction with the main roads will be as small as possible. The dissatisfaction with some roads can become negative. It is not necessary to spend whole budget S.
It is guaranteed that it is possible to travel from any city to any other using existing roads. Each road in the kingdom is a two-way road.
The first line contains two integers n and m (2 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of cities and the number of roads in the kingdom, respectively.
The second line contains m integers w1, w2, ..., wm (1 ≤ wi ≤ 109), where wi is the drivers dissatisfaction with the i-th road.
The third line contains m integers c1, c2, ..., cm (1 ≤ ci ≤ 109), where ci is the cost (in lamziks) of reducing the dissatisfaction with the i-th road by one.
The next m lines contain the description of the roads. The i-th of this lines contain a pair of integers ai and bi (1 ≤ ai, bi ≤ n, ai ≠ bi) which mean that the i-th road connects cities ai and bi. All roads are two-way oriented so it is possible to move by the i-th road from aito bi, and vice versa. It is allowed that a pair of cities is connected by more than one road.
The last line contains one integer S (0 ≤ S ≤ 109) — the number of lamziks which we can spend for reforms.
In the first line print K — the minimum possible total dissatisfaction with main roads.
In each of the next n - 1 lines print two integers x, vx, which mean that the road x is among main roads and the road x, after the reform, has the level of dissatisfaction vx.
Consider that roads are numbered from 1 to m in the order as they are given in the input data. The edges can be printed in arbitrary order. If there are several answers, print any of them.
6 9
1 3 1 1 3 1 2 2 2
4 1 4 2 2 5 3 1 6
1 2
1 3
2 3
2 4
2 5
3 5
3 6
4 5
5 6
7
0
1 1
3 1
6 1
7 2
8 -5
3 3
9 5 1
7 7 2
2 1
3 1
3 2
2
5
3 0
2 5
分析:题目大意是有n个点,m条路,每条路有不满意度w[i],以及减小一个不满意度代价c[i],
问给你s元,找到一个总不满意度最小的生成树,保证有解;
经过观察可以发现我们用S元总是对一条路使用的;
所以跑一遍最小生成树求得初始最小花费;
枚举不在树上的边,加入后形成环,删去这条边两个节点路上w[j]最大的边,判断是否更优;
两个节点经过的路边的最大值可以用倍增lca,或树链剖分;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
#define freopen freopen("in.txt","r",stdin)
const int maxn=2e5+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,fa[][maxn],dep[maxn],w[maxn],c[maxn],ok[maxn],pq[maxn],u[maxn],v[maxn],p[maxn],s;
vi ans;
vector<pii>e[maxn];
pii ex,ey,st[][maxn];
ll sum,best;
int find(int x){return p[x]==x?x:p[x]=find(p[x]);}
void dfs(int p)
{
for(int i=;fa[i-][p];i++)
{
fa[i][p]=fa[i-][fa[i-][p]];
st[i][p]=max(st[i-][p],st[i-][fa[i-][p]]);
}
for(pii x:e[p])
{
int to=x.fi,q=x.se;
if(to==fa[][p])continue;
dep[to]=dep[p]+;
fa[][to]=p;
st[][to]=mp(w[q],q);
dfs(to);
}
}
pii max_lca(int a,int b)
{
pii ma=mp(,);
if(dep[a]<dep[b])swap(a,b);
for(int i=;i>=;i--)
if(dep[fa[i][a]]>=dep[b])ma=max(ma,st[i][a]),a=fa[i][a];
if(a==b)return ma;
for(int i=;i>=;i--)
{
if(fa[i][a]!=fa[i][b])
{
ma=max(ma,st[i][a]);
ma=max(ma,st[i][b]);
a=fa[i][a];
b=fa[i][b];
}
}
ma=max(ma,st[][a]);
ma=max(ma,st[][b]);
return ma;
}
int main()
{
int i,j;
n=read(),m=read();
rep(i,,m)w[i]=read();
rep(i,,m)c[i]=read();
rep(i,,m)u[i]=read(),v[i]=read(),pq[i]=i;
scanf("%d",&s);
sort(pq+,pq+m+,[](const int&x,const int&y){return w[x]<w[y];});
rep(i,,n)p[i]=i;
ex=mp(inf,inf);
rep(i,,m)
{
int x=find(u[pq[i]]),y=find(v[pq[i]]);
if(x!=y)
{
p[x]=y;
sum+=w[pq[i]];
ex=min(ex,mp(c[pq[i]],pq[i]));
ans.pb(pq[i]);
e[u[pq[i]]].pb(mp(v[pq[i]],pq[i]));
e[v[pq[i]]].pb(mp(u[pq[i]],pq[i]));
}
else ok[pq[i]]=;
}
dfs();
best=sum-s/ex.fi;
rep(i,,m)
{
if(ok[i])
{
ll now=sum;
pii better=max_lca(u[i],v[i]);
now-=better.fi;
now+=w[i]-s/c[i];
if(now<best)
{
best=now;
ex=better;
ey=mp(c[i],i);
}
}
}
printf("%lld\n",best);
for(int x:ans)
{
if(x==ex.se)
{
if(!ey.se)printf("%d %d\n",x,w[x]-s/c[x]);
}
else printf("%d %d\n",x,w[x]);
}
if(ey.fi)printf("%d %d\n",ey.se,w[ey.se]-s/c[ey.se]);
//system("Pause");
return ;
}
Drivers Dissatisfaction的更多相关文章
- CF733F Drivers Dissatisfaction【链剖】【最小生成树应用】
F. Drivers Dissatisfaction time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- Codeforces Round #378 (Div. 2) F - Drivers Dissatisfaction
F - Drivers Dissatisfaction 题目大意:给你n个点,m条边,每个边都有一个权重w,每条边也有一个c表示,消耗c元可以把这条边的权重减1,求最多消耗s元的最小生成树. 思路:因 ...
- codeforce 378 div 2 F —— Drivers Dissatisfaction (最小生成树,LCA,倍增)
官方题解: If you choose any n - 1 roads then price of reducing overall dissatisfaction is equal to min(c ...
- 【codeforces 733F】 Drivers Dissatisfaction
http://codeforces.com/problemset/problem/733/F (题目链接) 题意 给出一张n个点的无向图,每一条变有两个特征值:${w,c}$:分别表示这条边的权值为$ ...
- Codeforces 733F Drivers Dissatisfaction
题意:有n个点,m条边,每条边有不满意度w[i],以及减小一个不满意度代价c[i],问给你s元用来减少代价,找到一个总不满意度最小的生成树,保证有解.(减少后的不满意度可以为负数)思路:显然所有的钱都 ...
- Drivers Dissatisfaction 最小生成树+LCA
题意:给一张n个点m条边的连通图,每条边(ai,bi)有一个权值wi和费用ci, 表示这条边每降低1的权值需要ci的花费.现在一共有S费用可以用来降低某些边的权值 (可以降到负数),求图中的一棵权值和 ...
- Codeforces Round #378 (Div. 2)F - Drivers Dissatisfaction GNU
http://codeforces.com/contest/733/problem/F 题意:给你一些城市和一些路,每条路有不满意程度和每减少一点不满意程度的花费,给出最大花费,要求找出花费小于s的最 ...
- 【CF733F】Drivers Dissatisfaction(最小瓶颈生成树,倍增)
题意:给出一个图,每条边有权值和花费c,每次花费c能使的权值-1.给出一个预算,求减完权值后的一个最小生成树. 思路:感谢CC大神 有这样一个结论:最佳方案里必定存在一种,预算全部花费全部分配在一条边 ...
- 【codeforces 733F】Drivers Dissatisfaction
[题目链接]:http://codeforces.com/problemset/problem/733/F [题意] 给你n个点m条边; 让你从中选出n-1条边; 形成一个生成树; (即让n个点都联通 ...
随机推荐
- javascript基础(三)运算
原文http://pij.robinqu.me/ 递增递减操作符(包括前置和后置).一元正负符号操作符 这些操作符适用于任何数据类型的值,针对不同类型的值,该操作符遵循以下规则(经过对比发现,其规则与 ...
- bzoj1417: Pku3156 Interconnect
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1417 1417: Pku3156 Interconnect Time Limit: 10 ...
- hdu_5881_Tea(xjb猜)
题目链接:hdu_5881_Tea 题意: 有一壶水, 体积在 L 和 R 之间, 有两个杯子, 你要把水倒到两个杯子里面, 使得杯子水体积几乎相同(体积的差值小于等于1), 并且使得壶里剩下水体积不 ...
- 浙大pat 1025题解
1025. PAT Ranking (25) 时间限制 200 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Programmi ...
- git config and options core.bare hard
In Lynda course Building a Web Interface with React.js 003 Using the exercises > git clone --bare ...
- 大数加法(STL list)
#include<iostream> #include<list> #include<string> using namespace std; int main() ...
- [转]整理jquery使用好习惯
1.选择器Selector的使用 1)使用id定位性能最好 1.$("#id") 2)使用标签名定位,性能其次 1.$("p"),$("div ...
- updateMany
db.tblDaily.updateMany( {"Comments.ViewCount":0}, {$addToSet:{"Comments.$.CommentDate ...
- AJAx 刷新页面
<html><head> <meta http-equiv="Content-Type" content="text/html; chars ...
- C++设计模式-Iterator迭代器模式
ref: http://www.cnblogs.com/onlycxue/archive/2013/12/25/3490738.html