题目:

给一个n,n的网格,点可以遮挡视线,问从0,0看能看到多少点


题解:

根据对称性,我们可以把网格按y=x为对称轴划分成两半,求一半的就可以了,可以想到的是应该每种斜率只能看到一个点

因为斜率表达式k=y/x,所以直线上的点都满足这个关系,那么显然当gcd(x,y)==1的时候这个点是直线上的第一个点,其他点的坐标一定是这个点的若干倍

所以问题转化成求gcd(x,y)==1的点对个数,即∑phi[i](1<=i<=n)

欧拉函数即可

 #include<cstdio>
using namespace std;
int n,t,ans;
int oula(int n)
{
int ans=n,a=n;
for(int i=;i*i<=n;i++)
{
if(a%i==)
{
ans-=ans/i;
while(a%i==)
a/=i;
}
}
if(a>) ans-=ans/a;
return ans;
}
int main()
{
scanf("%d",&t);
for (int i=;i<=t;i++)
{
ans=;
scanf("%d",&n);
for (int j=;j<=n;j++)
ans+=oula(j);
printf("%d %d %d\n",i,n,ans*+);
}
return ;
}

POJ 3090 Visible Lattice Points | 其实是欧拉函数的更多相关文章

  1. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  2. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

  3. POJ 3090 Visible Lattice Points 【欧拉函数】

    <题目链接> 题目大意: 给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点. 解题分析:很明显,因为 N (1 ≤ N ≤ 1000) ,所以无论 N 为多 ...

  4. poj 3090 Visible Lattice Points(离线打表)

    这是好久之前做过的题,算是在考察欧拉函数的定义吧. 先把欧拉函数讲好:其实欧拉函数还是有很多解读的.emmm,最基础同时最重要的算是,¢(n)表示范围(1, n-1)中与n互质的数的个数 好了,我把规 ...

  5. [poj] 3090 Visible Lattice Points

    原题 欧拉函数 我们发现,对于每一个斜率来说,这条直线上的点,只有gcd(x,y)=1时可行,所以求欧拉函数的前缀和.2*f[n]+1即为答案. #include<cstdio> #def ...

  6. POJ 3090 Visible Lattice Points 欧拉函数

    链接:http://poj.org/problem?id=3090 题意:在坐标系中,从横纵坐标 0 ≤ x, y ≤ N中的点中选择点,而且这些点与(0,0)的连点不经过其它的点. 思路:显而易见, ...

  7. POJ 3090 Visible Lattice Points (ZOJ 2777)

    http://poj.org/problem?id=3090 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1777 题目大意: ...

  8. poj 3090 Visible Lattice Points 法利系列||通过计

    因为图像关于对角线对称.所以我们仅仅看下三角区域. 将x轴看做分母,被圈的点看成分子 依次是{1/2},{1/3,1/2},{1/4,3/4},{1/5,2/5,3/5,4/5} 写成前缀和的形式就是 ...

  9. poj 3060 Visible Lattice Points

    http://poj.org/problem?id=3090 Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Tota ...

随机推荐

  1. javascript中call,apply,bind的使用

    不同点: 1.call():传参方式跟bind一样(都是以逗号隔开的传参方式),但是跟apply(以数组的形式传参)不一样, 2.bind(): 此方法应用后的情形跟call和apply不一样.该方法 ...

  2. java后台输入数据的2种方式

    java后台输入数据的2种方式 (1) import java.io.BufferedReader; import java.io.InputStreamReader; public class 输入 ...

  3. spring-bean(xml方式DI)

    三种属性注入方式 构造函数注入 1.在Bean实体中写入构造函数(带参构造) 2. <bean id=”该bean的名称” class=”注入的bean的全路径”> <constru ...

  4. python--Matplotlib(一)

    基础知识薄弱的同学可以看看一下博客 https://www.cnblogs.com/dev-liu/p/pandas_plt_basic.html https://blog.csdn.net/Notz ...

  5. python__高级 : @修饰器(装饰器)的理解

    以下是第一次了解的时候写的东西,有的地方理解不正确,虽已改正但是太片面,请直接看下面第二次修改加上的内容. ---------------------------------------------- ...

  6. 千锋教育Vue组件--vue基础的方法

    课程地址: https://ke.qq.com/course/251029#term_id=100295989 <!DOCTYPE html> <html> <head& ...

  7. Makefile (3) 基本语法和使用

    make是用来管理一个工程项目的工具 . Makefile就是这个项目文件 . 1.Makefile 是由若干条规则组成的,每个规则的语法如下所示 : #规则 targets: prerequisit ...

  8. Jongmah CodeForces - 1110D

    传送门 题意:你有n个数字,范围[1, m],你可以选择其中的三个数字构成一个三元组,但是这三个数字必须是连续的或者相同的,每个数字只能用一次,问这n个数字最多构成多少个三元组? 题解:三个一模一样的 ...

  9. POJ:3977-Subset(双向搜索)

    Subset Time Limit: 30000MS Memory Limit: 65536K Total Submissions: 5961 Accepted: 1129 Description G ...

  10. Echarts 解决饼图文字过长重叠的问题

    之前在网上查找了很多关于解决饼图文字描述过长导致重叠的问题,找了很多一直没有一个合适的解决方案,最后自己只能花时间研究echarts文档,功夫不负有心人,终于解决了文字重叠展示不全等问题. 废话不多说 ...