复习模板。

两两合并同余方程

$x\equiv C_{1} \ (Mod\ P_{1})$

$x\equiv C_{2} \ (Mod\ P_{2})$

把它写成不定方程的形式:

$x = C_{1} + P_{1} * y_{1}$

$x = C_{2} + P_{2} * y_{2}$

发现上下两式都等于$x$

所以$C_{1} + P_{1} * y_{1} = C_{2} + P_{2} * y_{2}$

稍微移项一下,有$P_{1} * y_{1} + P_{2} * (-y_{2}) = C_{2} - C_{1}$。

发现这个式子很眼熟,其实就是一个不定方程,那么根据裴蜀定理,要使此方程有解需要满足$gcd(P_{1}, P_{2}) | (C_{2} - C_{1})$,否则这一堆同余方程就无解了。

我们有$exgcd$算法可以解这个$y_{1}$,解出来之后把它回代到上式里面去,就得到了合并之后的同余方程:$x\equiv C_{1} + P_{1} * y_{1} \ (Mod\ lcm(P_{1}, P_{2}))$。

根据【NOI2018】屠龙勇士的经验,当$P == 1$的时候,这个同余方程其实是没什么意义的,但是把它代进去算就会挂掉,所以需要特判掉。

发现乘法会溢出,需要使用快龟速乘,按照我自己的sb写法,要注意在龟速乘的时候保证$y \geq 0$。

时间复杂度$O(nlog^{2}n)$,然而欧几里得算法的$log$基本上都跑不满。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 1e5 + ; int n;
ll rest[N], mod[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline ll mul(ll x, ll y, ll P) {
ll res = ;
for(; y > ; y >>= ) {
if(y & ) res = (res + x) % P;
x = (x + x) % P;
}
return res;
} ll exgcd(ll a, ll b, ll &x, ll &y) {
if(!b) {
x = , y = ;
return a;
} ll res = exgcd(b, a % b, x, y), tmp = x;
x = y, y = tmp - (a / b) * y;
return res;
} inline ll exCrt() {
ll P, c, x, y, d, t; int pos = ;
for(int i = ; i <= n; i++)
if(mod[i] != ) {
pos = i, P = mod[i], c = rest[i];
break;
}
for(int i = pos + ; i <= n; i++) {
if(mod[i] == ) continue;
d = exgcd(P, mod[i], x, y);
ll r = (((rest[i] - c)) % mod[i] + mod[i]) % mod[i];
t = mul(x, r / d, mod[i] / d);
// t = (rest[i] - c) / d * x;
// t = (t % (mod[i] / d) + (mod[i] / d)) % (mod[i] / d);
// c = (c + mul(P, t, P / d * mod[i])) % (P / d * mod[i]);
c = c + P * t;
P = P / d * mod[i];
c = (c % P + P) % P;
}
return (c % P + P) % P;
} int main() { read(n);
for(int i = ; i <= n; i++)
read(mod[i]), read(rest[i]); printf("%lld\n", exCrt());
return ;
}

Luogu 4777 【模板】扩展中国剩余定理(EXCRT)的更多相关文章

  1. 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结

    中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...

  2. 扩展中国剩余定理 (exCRT) 的证明与练习

    原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...

  3. 扩展中国剩余定理 (ExCRT)

    扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\ ...

  4. 扩展中国剩余定理(EXCRT)快速入门

    问题 传送门 看到这个问题感觉很难??? 不用怕,往下看就好啦 假如你不会CRT也没关系 EXCRT大致思路 先考虑将方程组两两联立解开,如先解第一个与第二个,再用第一个与第二个的通解来解第三个... ...

  5. 扩展中国剩余定理 exCRT 学习笔记

    前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...

  6. [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)

    题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...

  7. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  8. P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT

    EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...

  9. P4777 【模板】扩展中国剩余定理(EXCRT)

    思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...

  10. 中国剩余定理(crt)和扩展中国剩余定理(excrt)

    数论守门员二号 =.= 中国剩余定理: 1.一次同余方程组: 一次同余方程组是指形如x≡ai(mod mi) (i=1,2,…,k)的同余方程构成的组 中国剩余定理的主要用途是解一次同余方程组,其中m ...

随机推荐

  1. 细说移动前端Android联调

    为什么要联调 A:正在疯狂coding的时候,产品MM过来,焦急的说两周前的一个页面在手机上显示略微错位,但小本上显示正常! B:本着爱折腾的原则,作为大前端,在移动互联网时代的基本技能. 联调的方式 ...

  2. 利用HTML5开发Android笔记(上篇)

    资源来自于www.mhtml5.com 杨丰盛老师成都场的PPT分享 一个很简明的demo 可以作为入门基础 学习的过程中做了点笔记 整理如下 虽然内容比较简单 但是数量还是比较多的 所以分了3篇 ( ...

  3. nginx中关于并发数的问题worker_connections,worker_processes

    我认为,要搞清楚这个公式是否正确,以及如何计算的,那首先要对nginx的各个配置说明有清晰的认识: 从用户的角度,http 1.1协议下,由于浏览器默认使用两个并发连接,因此计算方法: nginx作为 ...

  4. hdu 4632 回文子序列计数

    水题 #include<iostream> #include<stdio.h> #include<cstring> #include<algorithm> ...

  5. RSA公钥,私钥和数字签名通用理解

    一.公钥加密 假设一下,我找了两个数字,一个是1,一个是2.我喜欢2这个数字,就保留起来,不告诉你们(私钥),然后我告诉大家,1是我的公钥. 我有一个文件,不能让别人看,我就用1加密了.别人找到了这个 ...

  6. 聊聊 SQL Joins

    SQL 中的 Join 有以下几种类型: 1.Cross Join 交叉连接,没有条件筛选,返回笛卡尔积. 如果以 ,(逗号)分隔表名进行查询如 select * from tbl_name1, tb ...

  7. L2-005. 集合相似度(set使用)

    L2-005. 集合相似度 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 给定两个整数集合,它们的相似度定义为:Nc/Nt*1 ...

  8. Spring学习五

    1: servlet生命周期:  Servlet加载    ->   实例化->   服务 ->  销毁 2:Servlet重要函数: init():在Servlet的生命周期中,仅 ...

  9. c# 遍历目录

    public static List<string> TraverseDirector(string dir, bool isTraveSubDirFlag, bool isFilterS ...

  10. 问题:oracle select into;结果:oracle SELECT INTO 和 INSERT INTO SELECT 两种表复制语句详解

    oracle SELECT INTO 和 INSERT INTO SELECT 两种表复制语句详解 (2011-07-08 08:59:47) 转载▼ 标签: it 分类: oracle 我们经常会遇 ...