九度OJ 1205:N阶楼梯上楼问题 (斐波那契数列)
时间限制:1 秒
内存限制:128 兆
特殊判题:否
提交:3739
解决:1470
- 题目描述:
-
N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式。(要求采用非递归)
- 输入:
-
输入包括一个整数N,(1<=N<90)。
- 输出:
-
可能有多组测试数据,对于每组数据,
输出当楼梯阶数是N时的上楼方式个数。
- 样例输入:
-
4
- 样例输出:
-
5
思路:
仔细分析一下就知道是斐波那契数列。
要求不用递归,我没有用函数递归,用的是数组。
代码:
#include <stdio.h> int main()
{
long long a[91];
a[1] = 1;
a[2] = 2;
int i, n;
for(i=3; i<=91; i++)
a[i] = a[i-1]+a[i-2];
while(scanf("%d", &n) != EOF)
{
printf("%lld\n", a[n]);
}
return 0;
}
/**************************************************************
Problem: 1205
User: liangrx06
Language: C
Result: Accepted
Time:0 ms
Memory:912 kb
****************************************************************/
九度OJ 1205:N阶楼梯上楼问题 (斐波那契数列)的更多相关文章
- 九度OJ 1205 N阶楼梯上楼问题 -- 动态规划(递推求解)
题目地址:http://ac.jobdu.com/problem.php?pid=1205 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括 ...
- 九度OJ 1205 N阶楼梯上楼问题 (DP)
题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:2817 解决:1073 题目描写叙述: N阶楼梯上楼问题:一次能够走两阶或一阶.问有多少种上楼方式. (要 ...
- 九度OJ题目1387斐波那契数列
/*斐波那契数列,又称黄金分割数列,指的是这样一个数列: 0.1.1.2.3.5.8.13.21.…… 在数学上,斐波纳契数列被定义如下: F0=0,F1=1, Fn=F(n-1)+F(n-2)(n& ...
- 剑指Offer - 九度1387 - 斐波那契数列
剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...
- HDOJ2041_超级楼梯(斐波拉契数列)
正常简单题:通过仔细观察推断即可看出这是一个斐波拉契数列的题目. HDOJ2041_超级楼梯 在做这题的时候我误入了思维盲区,只想着什么方法可以解决,没有看出是斐波拉契数列.因此第一次用组合数方法打了 ...
- 几种复杂度的斐波那契数列的Java实现
一:斐波那契数列问题的起源 13世纪初期,意大利数论家Leonardo Fibonacci在他的著作Liber Abaci中提出了兔子的繁殖问题: 如果一开始有一对刚出生的兔子,兔子的长大需要一个月, ...
- python斐波那契数列复杂度
契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n ...
- k阶斐波那契数列fibonacci第n项求值
已知K阶斐波那契数列定义为:f0 = 0, f1 = 0, … , fk-2 = 0, fk-1 = 1;fn = fn-1 + fn-2 + … + fn-k , n = k , k + 1, … ...
- Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度
Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...
随机推荐
- asp.net服务器数据源控件学习笔记
1.数据绑定控件的DataSource属性只能接受三种接口类型的数据 (IListSource,IEnumerable,IDataSource) 2.要手动在已经绑定数据的数据绑定控件上添加自定义的数 ...
- 将 xml 文件 转为 DataTable
private static DataTable CreateDataTable(string table) { DataSet dataSet = new DataSet(); string dat ...
- HTML5 Canvas 画钟表
画钟表是2D画图的老生常谈,我也不能免俗弄了一个.代码如下: <!DOCTYPE html> <html lang="utf-8"> <meta ht ...
- Windows局域网如何进行远程桌面连接
我们以虚拟机为例: 1 确保被控制的计算机允许远程连接 2 确保被控制的计算机有密码(一般人方便,只有一个administrator账号,而且不设密码,开机直接进入的,如果没有密码,将无法进行远程 ...
- 倒计时:CountDownLatch(火箭发射前的准备)读书笔记
这是一个非常实用的多线程控制工具类,经典的场景就是 火箭发射,在火箭发射前,为了保证万无一失,往往还要进行各项设备,仪器的检查,只有等待所有的检查完毕后,引擎才能点火, CountDown ...
- 怎样把报表放到网页中显示(Web页面与报表简单集成样例)
1.问题描写叙述 如今用户开发的系统基本上趋向于BS架构的浏览器/server模式.这些系统可能由不同的语言开发.如HTML.ASP.JSP.PHP等.因此须要将制作好的报表嵌入到这些页面中. Fin ...
- UITextView被键盘遮挡的处理
这个应该是一个通用的任务了吧,键盘弹出来的时候,UITextView(或者UITextField)会被遮挡. 解决的办法就不是很能通用了. 1. 如果有UIScrollView做父view的话只需要滚 ...
- Sequence contains no matching element
1.linq查询Single方法出错 var c = DbCache.UserRoles.Single(ur => ur.RoleId == roleId); 2.使用方法System.Linq ...
- nginx 做前端代理时proxy参数配置
1.后台可登录: proxy_connect_timeout 300s; proxy_send_timeout ; proxy_read_timeout ; proxy_buffer_size 256 ...
- elasticsearch 单节点实现
一.安装java环境,这么不说了,一般用源码安装,配置好环境变量 二.新建es用户和组,es不能用root启动 三.下载需要的稳定版es 四.解压安装es .zip /opt/app/ es / 五. ...