++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个二叉树,返回他的中序遍历的节点的values。

例如:

给定一个二叉树 {1,#,2,3},

   1
\
2
/
3

返回 [1,3,2].

笔记:

递归解决方案是微不足道的,你可以用迭代的方法吗?
困惑什么"{1,#,2,3}" 的意思吗? > read more on how binary tree is serialized on OJ.
 
二叉树序列化:
序列号的二叉树遵循的是层次遍历的顺序,'#'代表羡慕没有节点了,是路径的终结者。
这里有个例子:
   1
/ \
2 3
/
4
\
5

上面的二叉树可以序列化为"{1,2,3,#,#,4,#,#,5}".  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given a binary tree, return the inorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
\
2
/
3

return [1,3,2].

Note: Recursive solution is trivial, could you do it iteratively?

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
/ \
2 3
/
4
\
5

The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

void inorder(TreeNode *root, vector<int> &path)
{
    if(root != NULL)
    {
        inorder(root->left, path);
        path.push_back(root->val);
        inorder(root->right, path);
    }
}

vector<int> inorderTraversal(TreeNode *root)
{
    vector<int> path;
    inorder(root, path);
    return path;
}

// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

PrintTree(pNodeA1);

vector<int> ans = inorderTraversal(pNodeA1);

for (int i = 0; i < ans.size(); ++i)
    {
        cout << ans[i] << " ";
    }
    cout << endl;

DestroyTree(pNodeA1);
    return 0;
}

输出结果:

9 6 4 2 7 8 1
 

2.非递归实现

根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:

对于任一结点P,

1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;

2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;

3)直到P为NULL并且栈为空则遍历结束

test.cpp:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

//非递归中序遍历
vector<int> inorderTraversal(TreeNode *root)
{
    stack<TreeNode *> s;
    vector<int> path;
    TreeNode *p = root;
    while(p != NULL || !s.empty())
    {
        while(p != NULL)
        {
            s.push(p);
            p = p->left;
        }
        if(!s.empty())
        {
            p = s.top();
            path.push_back(p->val);
            s.pop();
            p = p->right;
        }
    }
    return path;
}

// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

PrintTree(pNodeA1);

vector<int> ans = inorderTraversal(pNodeA1);

for (int i = 0; i < ans.size(); ++i)
    {
        cout << ans[i] << " ";
    }
    cout << endl;

DestroyTree(pNodeA1);
    return 0;
}

 

输出结果:

9 6 4 2 7 8 1
 
 
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

【遍历二叉树】02二叉树的中序遍历【Binary Tree Inorder Traversal】的更多相关文章

  1. [线索二叉树] [LeetCode] 不需要栈或者别的辅助空间,完成二叉树的中序遍历。题:Recover Binary Search Tree,Binary Tree Inorder Traversal

    既上篇关于二叉搜索树的文章后,这篇文章介绍一种针对二叉树的新的中序遍历方式,它的特点是不需要递归或者使用栈,而是纯粹使用循环的方式,完成中序遍历. 线索二叉树介绍 首先我们引入“线索二叉树”的概念: ...

  2. LeetCode 94. 二叉树的中序遍历(Binary Tree Inorder Traversal)

    94. 二叉树的中序遍历 94. Binary Tree Inorder Traversal 题目描述 给定一个二叉树,返回它的 中序 遍历. LeetCode94. Binary Tree Inor ...

  3. [leetcode] 94. Binary Tree Inorder Traversal 二叉树的中序遍历

    题目大意 https://leetcode.com/problems/binary-tree-inorder-traversal/description/ 94. Binary Tree Inorde ...

  4. 二叉树前序、中序、后序非递归遍历 144. Binary Tree Preorder Traversal 、 94. Binary Tree Inorder Traversal 、145. Binary Tree Postorder Traversal 、173. Binary Search Tree Iterator

    144. Binary Tree Preorder Traversal 前序的非递归遍历:用堆来实现 如果把这个代码改成先向堆存储左节点再存储右节点,就变成了每一行从右向左打印 如果用队列替代堆,并且 ...

  5. [LeetCode] Binary Tree Inorder Traversal 二叉树的中序遍历

    Given a binary tree, return the inorder traversal of its nodes' values. For example:Given binary tre ...

  6. Leetcode 94. Binary Tree Inorder Traversal (中序遍历二叉树)

    Given a binary tree, return the inorder traversal of its nodes' values. For example: Given binary tr ...

  7. 94 Binary Tree Inorder Traversal(二叉树中序遍历Medium)

    题目意思:二叉树中序遍历,结果存在vector<int>中 解题思路:迭代 迭代实现: /** * Definition for a binary tree node. * struct ...

  8. [Swift]LeetCode94. 二叉树的中序遍历 | Binary Tree Inorder Traversal

    Given a binary tree, return the inorder traversal of its nodes' values. Example: Input: [1,null,2,3] ...

  9. [leetcode]94. Binary Tree Inorder Traversal二叉树中序遍历

    Given a binary tree, return the inorder traversal of its nodes' values. Example: Input: [1,null,2,3] ...

随机推荐

  1. ASP.NET动态网站制作(18)-- jq作业讲解及知识补充

    前言:这节课主要讲解js及jq作业,并在作业讲解完后补充关于jQuery的一些知识点. 内容: 1.作业讲解:计算器那一块考虑的各种情况还不算完善,只实现了基本的功能,还需多多练习使用jQuery. ...

  2. F - Monkey Banana Problem

    F - Monkey Banana Problem Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & ...

  3. [原创]实现多层DIV叠加的js事件穿透

    Flash里面有个很好的特性是,一个容器里,不存在实际对象的部分,不会阻拦鼠标事件穿透到下一层. 前端就不一样了,两个div层叠以后,上层div会接收到所有事件(即使这个div里面内容是空的,没有任何 ...

  4. SVM vs. Softmax

    http://cs231n.github.io/linear-classify/

  5. thinkphp5, 模板继承、模板布局

    ---------------------------------------------------------------------------------------------------- ...

  6. ElasticSearch(三十)基于scoll+bulk+索引别名实现零停机重建索引

    1.为什么要重建索引? 总结,一个type下的mapping中的filed不能被修改,所以如果需要修改,则需要重建索引 2.怎么zero time重建索引? 一个field的设置是不能被修改的,如果要 ...

  7. vim vimdiff diff 使用及命令

    vim: vim 从 vim7 开始加入了多标签切换的功能, 相当于多窗口. 之前的版本虽然也有多文件编辑功能, 但是总之不如这个方便啦.用法::tabnew [++opt选项] [+cmd] 文件  ...

  8. 【转载】Java定时器的学习

    前几看了一下<thinking in java>了解到java原生的Times类有两个问题: (1)Timer是启动单个线程来处理所有的时间任务,如果一个任务耗时很久,那么如果在执行这个过 ...

  9. Linux ~ termios 串口编程

    ermios 结构是在POSIX规范中定义的标准接口,它类似于系统V中的termio接口,通过设置termios类型的数据结构中的值和使用一小 组函数调用,你就可以对终端接口进行控制. 可以被调整来影 ...

  10. [原创]java WEB学习笔记23:MVC案例完整实践(part 4)---模糊查询的设计与实现

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...