题面

传送门

题解

这种题目就是推倒推倒

\[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\sum_{j=1}^n[\gcd(j,n)=i]
\]

\[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\sum_{j=1}^{\frac{n}{i}}[\gcd(j,\frac{n}{i})=1]
\]

\[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\varphi({\frac{n}{i}})
\]

然后暴力就行了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=1e5+5;
bitset<N>vis;int p[N],phi[N],c[N],v[N],top,n,m,t,sqr;ll res;
void init(int n){
phi[1]=1;
fp(i,2,n){
if(!vis[i])p[++m]=i,phi[i]=i-1;
for(R int j=1;j<=m&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1;
if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
}
int Phi(int n){
if(n<=sqr)return phi[n];
int res=n;
for(R int i=1;i<=m&&p[i]<=n;++i)if(n%p[i]==0){
while(n%p[i]==0)n/=p[i];
res=res/p[i]*(p[i]-1);
}
if(n!=1)res=res/n*(n-1);
return res;
}
void dfs(int pos,int now){
if(pos==top+1)return res+=1ll*now*Phi(n/now),void();
for(int i=0;i<=c[pos];++i,now*=v[pos])dfs(pos+1,now);
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n),init(sqr=N-5);
t=n;
fp(i,1,m)if(t%p[i]==0){
v[++top]=p[i];
while(t%p[i]==0)++c[top],t/=p[i];
}
if(t!=1)v[++top]=t,c[top]=1;
dfs(1,1);
printf("%lld\n",res);
return 0;
}

51nod1040最大公约数之和(欧拉函数)的更多相关文章

  1. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

  2. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  3. 51nod1040 最大公约数之和,欧拉函数或积性函数

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...

  4. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  5. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  6. 51nod 1040最大公约数和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

  7. 51nod 1040 最大公约数的和 欧拉函数

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

  8. 51nod1239 欧拉函数之和

    跟1244差不多. //由于(x+1)没有先mod一下一直WA三个点我... //由于(x+1)没有先mod一下一直WA三个点我... #include<cstdio> #include& ...

  9. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  10. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

随机推荐

  1. 三种web性能压力测试工具

    三种web性能压力测试工具http_load webbench ab小结 题记:压力和性能测试工具很多,下文讨论的是我觉得比较容易上手,用的比较多的三种 http_load 下载地址:http://w ...

  2. 第四章 Javac编译原理(待续)

    Javac是什么 Javac编译器的基本结构 Javac工作原理分析 设计模式解析之访问者模式

  3. Solaris10技巧

    如何查看UFS文件系统创建命令 root@ofs0accmcc01 # mkfs -m /dev/md/rdsk/d100 mkfs -F ufs -o nsect=128,ntrack=48,bsi ...

  4. scrapy xpath 节点关系

    父节点 子节点 兄弟节点 先辈节点 后代节点

  5. [Python Study Notes]气泡散点图绘制

    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...

  6. maven ...../.m2/settings.xml

    <?xml version="1.0" encoding="UTF-8"?> <settings xmlns="http://mav ...

  7. MyBatis总结七:动态sql和sql片段

    开发中,sql拼接很常见,所以说一下动态sql: 1 if 2 chose,when,otherwise 3 where,set 4 foreach 用法解析(现有一张users表 内有id user ...

  8. xUtils 源码解析

    1. 功能介绍 xUtils 一个 Android 公共库框架,主要包括四个部分:View,Db, Http, Bitmap 四个模块. View 模块主要的功能是通过注解绑定 UI,资源,事件. D ...

  9. winform 打印

    pageSetupDialog 打印设置,和对话框控件差不多的套路,把控件拖到窗口中后,会在下方显示, 然后在制作的菜单中找到打印设置,双击进入点击事件写代码 按照之前的套路, DialogResul ...

  10. IFC文档结构说明

    工业基础类为代表的建筑信息BIM数据交换和共享在一个建筑或设施管理项目各参与者之间的开放规范的建模.IFC是国际openbim标准.本文件包含的IFC标准的规范.该规范包括的数据架构,表示为一个表达模 ...