题面

传送门

题解

这种题目就是推倒推倒

\[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\sum_{j=1}^n[\gcd(j,n)=i]
\]

\[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\sum_{j=1}^{\frac{n}{i}}[\gcd(j,\frac{n}{i})=1]
\]

\[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\varphi({\frac{n}{i}})
\]

然后暴力就行了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=1e5+5;
bitset<N>vis;int p[N],phi[N],c[N],v[N],top,n,m,t,sqr;ll res;
void init(int n){
phi[1]=1;
fp(i,2,n){
if(!vis[i])p[++m]=i,phi[i]=i-1;
for(R int j=1;j<=m&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1;
if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
}
int Phi(int n){
if(n<=sqr)return phi[n];
int res=n;
for(R int i=1;i<=m&&p[i]<=n;++i)if(n%p[i]==0){
while(n%p[i]==0)n/=p[i];
res=res/p[i]*(p[i]-1);
}
if(n!=1)res=res/n*(n-1);
return res;
}
void dfs(int pos,int now){
if(pos==top+1)return res+=1ll*now*Phi(n/now),void();
for(int i=0;i<=c[pos];++i,now*=v[pos])dfs(pos+1,now);
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n),init(sqr=N-5);
t=n;
fp(i,1,m)if(t%p[i]==0){
v[++top]=p[i];
while(t%p[i]==0)++c[top],t/=p[i];
}
if(t!=1)v[++top]=t,c[top]=1;
dfs(1,1);
printf("%lld\n",res);
return 0;
}

51nod1040最大公约数之和(欧拉函数)的更多相关文章

  1. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

  2. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  3. 51nod1040 最大公约数之和,欧拉函数或积性函数

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...

  4. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  5. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  6. 51nod 1040最大公约数和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

  7. 51nod 1040 最大公约数的和 欧拉函数

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

  8. 51nod1239 欧拉函数之和

    跟1244差不多. //由于(x+1)没有先mod一下一直WA三个点我... //由于(x+1)没有先mod一下一直WA三个点我... #include<cstdio> #include& ...

  9. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  10. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

随机推荐

  1. struts2获得需要的文件或者访问路径

    在struts2中,上传文件的时候遇到一个很好用但是失效的方法,找到如下替代.并且测试了一下request可以得到的相关路径. 得到request对象: HttpServletRequest requ ...

  2. L2-004. 这是二叉搜索树吗?(前序转后序递归)

    L2-004. 这是二叉搜索树吗? 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 一棵二叉搜索树可被递归地定义为具有下列性质的 ...

  3. JAVA生成Word文档(经过测试)

    首先告诉大家这篇文章的原始出处:http://www.havenliu.com/java/514.html/comment-page-1#comment-756 我也是根据他所描述完成的,但是有一些地 ...

  4. Spring学习十 rest

    1:  Web  service:  是一个大的概念范畴,它表现了一种设计思想 SOAP 是 Web service 的一个重要组成部份. SOAP 是一种协议而非详细产品.SOAP 是通过 XML ...

  5. Git学习笔记(四)标签和搭建Git服务

    一.标签是什么 发布一个版本时,我们通常先在版本库中打一个标签,这样,就唯一确定了打标签时刻的版本.将来无论什么时候,取某个标签的版本,就是把那个打标签的时刻的历史版本取出来.所以,标签也是版本库的一 ...

  6. namenode和datanode机制

    转自:https://www.cnblogs.com/DarrenChan/p/6416043.html?utm_source=itdadao&utm_medium=referral 首先我们 ...

  7. 浅谈Android四大组建之一Service---Service与Activity的绑定

    从上一篇文章我们学会了如何创建Service,我们通过监听一个按钮,然后再按钮里面通过意图来启动Service.但是我们有没有发现,启动服务以后,Activity和Service之间的联系好像就断开了 ...

  8. 理解configure,make,make install(笔记整理)

    在Linux系统里有时候需要自己编译安装一些提供了源文件的软件,比如Nginx.一般编译的步骤是:configure -> make -> make install. 1. configu ...

  9. tornado带签名的cookie原理

  10. 离散对数的求解(bsgs)

    bsgs算法 主要用来解决${A^x} = B(\bmod C)$(c是质数),都是整数,已知A.B.C求x. 例:poj 2417 Discrete Logging 具体步骤如下: 先把$x = i ...