POJ 3734 Blocks(矩阵快速幂+矩阵递推式)
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数。
该题我们可以想到一个递推式 。 设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数的方案数, c[i]表示红绿都是奇数的方案数。
那么有如下递推可能:
递推a[i+1]:1.到第i个为止都是偶数,且第i+1个染成蓝或黄;2.到第i个为止红绿恰有一个是奇数,并且第i+1个方块染成了奇数对应的颜色。
递推b[i+1]:1.到第i个为止都是偶数,且第i+1个染成红或绿;2.到第i个为止红绿恰有一个是奇数,并且第i+1个方块染成了蓝或黄;3.到第i个方块为止红火绿都是奇数,并且第i+1个染成红火绿。
递推c[i+1]:1.到第i个为止红绿恰有一个是奇数, 并且第i+1个方块染成偶数对应的颜色;2.到第i个为止红绿都是奇数,并且第i+1个方块染成蓝或黄。
即a[i+1] = 2*a[i] + b[i];
b[i+1] = 2*a[i] + 2*b[i] + 2*c[i];
c[i+1] = b[i] + 2*c[i];
因为DP的过程中,每一步都是在重复上一个过程, 所以可以用矩阵相乘来优化算法。
将上述递推式写成矩阵相乘的形式:
{ a[i] } {2 1 0}^i{a[0] }
{ b[i] } = {2 2 2} {b[0] }
{ c[i] } {0 1 2} {c[0] }
然后用矩阵快速幂就可以了。
AC代码
#include<stdio.h>
#include<string.h>
#define mod 10007
struct Mat
{
long long mat[][];
}; Mat operator * (Mat a,Mat b)
{
int n=;
Mat c;
c.mat[][]=c.mat[][]=c.mat[][]=c.mat[][]=c.mat[][]=c.mat[][]=c.mat[][]=c.mat[][]=c.mat[][]=;
int i,j,k;
for(k = ; k < n ; k++)
{
for(i = ; i < n ;i++)
{
if(a.mat[i][k]==) continue;//优化
for(j = ;j < n ;j++)
{
if(b.mat[k][j]==) continue;//优化
c.mat[i][j] = (c.mat[i][j]+(a.mat[i][k]*b.mat[k][j])%mod)%mod;
}
}
}
return c;
}
Mat operator ^(Mat a,int k)
{
int n=;
Mat c;
int i,j;
for(i = ; i < n ;i++)
for(j = ; j < n ;j++)
c.mat[i][j] = (i==j);
for(; k ;k >>= )
{
if(k&) c = c*a;
a = a*a;
}
return c;
}
int main( )
{
long long n;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&n);
Mat A;
A.mat[][]=;A.mat[][]=;A.mat[][]=;
A.mat[][]=;A.mat[][]=;A.mat[][]=;
A.mat[][]=;A.mat[][]=;A.mat[][]=;
Mat ans=A^n;
printf("%lld\n",ans.mat[][]);
}
return ;
}
POJ 3734 Blocks(矩阵快速幂+矩阵递推式)的更多相关文章
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- CH 3401 - 石头游戏 - [矩阵快速幂加速递推]
题目链接:传送门 描述石头游戏在一个 $n$ 行 $m$ 列 ($1 \le n,m \le 8$) 的网格上进行,每个格子对应一种操作序列,操作序列至多有 $10$ 种,分别用 $0 \sim 9$ ...
- HDU 1757 矩阵快速幂加速递推
题意: 已知: 当x<10时:f(x)=x 否则:f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + --+ a9 * f(x-10); 求:f(x ...
- HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...
- AcWing 226. 233矩阵 (矩阵快速幂+线性递推)打卡
题目:https://www.acwing.com/problem/content/228/ 题意:有一个二维矩阵,这里只给你第一行和第一列,要你求出f[n][m],关系式有 1, f[0][ ...
- CH3401 石头游戏(矩阵快速幂加速递推)
题目链接:传送门 题目: 石头游戏 0x30「数学知识」例题 描述 石头游戏在一个 n 行 m 列 (≤n,m≤) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这10个数 ...
- BZOJ4547 Hdu5171 小奇的集合 【矩阵快速幂优化递推】
BZOJ4547 Hdu5171 小奇的集合 Description 有一个大小为n的可重集S,小奇每次操作可以加入一个数a+b(a,b均属于S),求k次操作后它可获得的S的和的最大值.(数据保证这个 ...
- [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)
Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...
- [bzoj1008](HNOI2008)越狱(矩阵快速幂加速递推)
Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 In ...
- 洛谷P1357 花园(状态压缩 + 矩阵快速幂加速递推)
题目链接:传送门 题目: 题目描述 小L有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为1~N(<=N<=^).他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻 ...
随机推荐
- java中的面向对象的三大基本特征
转载,原文来自http://blog.sina.com.cn/s/blog_5f79a56a0100c6ig.html 众所周知,java中的面向对象的三大基本特征是:[封装].[继承].[多态] 一 ...
- [poj2318]TOYS(直线与点的位置关系)
解题关键:计算几何入门题,通过叉积判断. 两个向量的关系: P*Q>0,Q在P的逆时针方向: P*Q<0,Q在P的顺时针方向: P*Q==0,Q与P共线. 实际就是用右手定则判断的. #i ...
- Angular22 HttpClient的使用
1 HttpClient介绍 HttpClient时Http的演进,注意:Http在@angular/http中,而HttpClient在@angular/common/http中: 使用前需要在模块 ...
- JavaPersistenceWithMyBatis3笔记-第4章SQL Mappers Using Annotations-001
一. 1.Mapper /** * */ package com.mybatis3.mappers; import org.apache.ibatis.annotations.Select; impo ...
- 移动应用中的AR开发,5款最受欢迎工具推荐!
英文原文:Top 5 Tools for Augmented Reality in Mobile Apps 还记得前段时间在网上很火的 3D 小熊不?托它的福,为相当一部分人科普了增强现实(AR) ...
- Spring第一篇
我计划用3到五篇文章来描述Spring,这是第一篇 1 . 什么是Spring Spring 是一个开源框架,Spring 是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnso ...
- C++面试笔记--面向对象
说到面向对象,大家第一反应应该就是它的三大特性:封装性.继承性和多态性.那么我们先简单的了解一下这三大特性: (1)封装性:封装,也就是把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的 ...
- 在Tomcat启动时直接创建servlet(二)
- 微信开放平台 redirect_uri参数错误
微信开放平台 redirect_uri参数错误 请注意是开放平台开放平台,公众平台和开放平台不是同一个. 解决办法 在写 授权回调域 时,地址只用写到域名级,不能写到域名下一级,这和QQ互联的回调 ...
- Django会话,用户和注册之cookie
HTTP状态和TCP不一样,HTTP是无状态的,也就是这一次请求和下一次请求之间没有任何状态保持,我们无法根据请求例如IP来识别是否在同一人的连续性请求.就像我们在访问网站的时候,输入了用户名和密码, ...