大致就是矩阵快速幂吧。。

这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?。。。后来发现十分的慢qwq也好像不对

于是考虑转化一下:首先把点$u$建成九个点,$P(u,i)$表示$u$点的第$i$个子点(其实就是计算编号用的).

先初始化,把所有u的点依次连上边权为1的边

然后比如有一条$(u,v)=x$的边,我们就把$P(u,x)与P(v,1)$连边(是不是十分精妙)

然后快速幂,搞定!

#include<cstdio>
#include<iostream>
#include<cstring>
const int N=,M=;
#define R register int
#define P(i,j) (9*(i-1)+j)
using namespace std;
struct Mat {
int sz,m[N][N];
inline void clear() {memset(m,,sizeof(m));}
inline Mat() {clear(); sz=;}
inline Mat operator * (const Mat& x)const { register Mat ret; ret.sz=sz;
for(R i=;i<=sz;++i) for(R k=;k<=sz;++k) for(R j=;j<=sz;++j)
(ret.m[i][j]+=m[i][k]*x.m[k][j]%M)%=M; return ret;
}
inline void operator *= (const Mat& x) {*this=(*this)*x;}
inline void e() {clear(); for(R i=;i<=sz;++i) m[i][i]=;}
inline Mat operator ^ (int b) { register Mat ret,a=(*this); ret.sz=sz; ret.e();
for(;b;b>>=,a*=a) if(b&) ret*=a; return ret;
}
}a;
int n,k;
signed main() {
scanf("%d%d",&n,&k); R n0=n; n*=; a.sz=n;
for(R i=;i<=n0;++i) for(R j=;j<=;++j) a.m[P(i,j)][P(i,j+)]=;
for(R i=;i<=n0;++i) for(R j=;j<=n0;++j) { R x;
scanf("%1d",&x); if(x>) a.m[P(i,x)][P(j,)]=;
} a=a^k; printf("%d",a.m[][P(n0,)]);
}

2019.05.25

Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化的更多相关文章

  1. BZOJ1297: [SCOI2009]迷路 矩阵快速幂

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  2. BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  3. LUOGU P4159 [SCOI2009]迷路(矩阵乘法)

    传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...

  4. [SCOI2009]迷路(矩阵快速幂) 题解

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  5. BZOJ 1297 迷路(矩阵快速幂)

    很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...

  6. 【矩阵快速幂】bzoj1297 [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1407  Solved: 1007[Submit][Status ...

  7. 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)

    [BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...

  8. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  9. bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...

随机推荐

  1. Gym - 100851J: Jump(交互+构造+(大胆瞎搞)))

    题意:给定长度为N的01串,现在让你猜这个串,猜的次数要不超过N+500次. 每次你猜一个串,系统会返回N/2,或N,或0.当且当有N/2个位置猜对,N个位置猜对,其他. 思路:因为信息不多,没有关联 ...

  2. PythonPath在Windows 下的设置

    今天在调试Evernote SDK时, 遇到PythonPath的问题. 查了很多资料,有说用系统环境变量添加PythonPath, 有说在注册表中的PythonPath添加新Default字段, 但 ...

  3. Azure自动化部署服务 (1)

    Azure中已经发布了自动化部署服务的PaaS功能. 本文将介绍自动化服务Automation初始化过程. 在Azure Management Portal上左边可以看到Azure的各种服务,其中一项 ...

  4. pycharm安装 package报错:module 'pip' has no attribute 'main'

    转自: <pycharm安装 package报错:module 'pip' has no attribute 'main'> https://www.cnblogs.com/Fordest ...

  5. Servlet的生命周期以及简单工作原理的讲解

    Servlet生命周期分为三个阶段: 1,初始化阶段              调用init()方法 2,响应客户请求阶段 调用service()方法 3,终止阶段           调用destr ...

  6. Oracle数据库安全性设计

    一.什么是安全的系统 安全性建设是一个长期并且卓绝的工作.作为一个符合标准的企业级系统,我们认为税务系统应该具备以下的安全性特点: ◆高可用性 ◆对敏感数据的访问控制能力. ◆监测用户行为的审计能力. ...

  7. 使用SVG + CSS实现动态霓虹灯文字效果

    效果图: 原理:多个SVG描边动画使用不同的animation-delay即可! 对于一个形状SVG元素或文本SVG元素,可以使用stroke-dasharray来控制描边的间隔样式,并且可以用str ...

  8. js中object、字符串与正则表达式的方法

    对象 1.object.hasOwnProperty(name) 检测object是否包含一个名为name的属性,那么hasOwnProperty方法返回true,但是不包括其原型上的属性. 正则表达 ...

  9. swiper实现左右滑动图片

    ref:http://www.swiper.com.cn/usage/index.html help:https://segmentfault.com/a/1190000002962202 src: ...

  10. Android运行时Crash自动恢复框架-Recovery

    转自:http://zhengxiaoyong.me/2016/09/05/Android%E8%BF%90%E8%A1%8C%E6%97%B6Crash%E8%87%AA%E5%8A%A8%E6%8 ...