旅行者问题

【问题描述】

lahub是一个旅行者的粉丝,他想成为一个真正的旅行者,所以他计划开始一段旅行。lahub想去参观n个目的地(都在一条直道上)。lahub在起点开始他的旅行。第i个目的地和起点的距离为ai千米(ai为非负整数)。不存在两个目的地和起点的距离相同。

从第i个目的地走到第j个目的地所走的路程为 |ai-aj|千米。我们把参观n个目的地的顺序称作一次“旅行”。lahub可以参观他想要参观的任意顺序,但是每个目的地有且只能被参观一次(参观顺序为n的排列)。

lahub把所有可能的“旅行”都写在一张纸上,并且记下每个“旅行”所要走的路程。他对所有“旅行”的路程之和的平均值感兴趣。但是他觉得计算太枯燥了,所以就向你寻求帮助。

【输入格式】

第一行一个正整数n。

第二行n个非负整数a1,a2,....,an(1≤ai≤10^7)。

【输出格式】

两个整数,答案用最简分数形式输出,第一个为分子,第二个为分母。

【输入样例】

3

2 3 5

【输出样例】

22 3

【样例提示

样例有6种可能的旅行:

[2, 3, 5]: 该“旅行”的路程:|2 – 0| + |3 – 2| + |5 – 3| = 5;

[2, 5, 3]: |2 – 0| + |5 – 2| + |3 – 5| = 7;

[3, 2, 5]: |3 – 0| + |2 – 3| + |5 – 2| = 7;

[3, 5, 2]: |3 – 0| + |5 – 3| + |2 – 5| = 8;

[5, 2, 3]: |5 – 0| + |2 – 5| + |3 – 2| = 9;

[5, 3, 2]: |5 – 0| + |3 – 5| + |2 – 3| = 8.

答案为 1/6 * (5+7+7+8+9+8)=44/6=22/3

【数据范围】

30% n<=10

50% n<=1000

100% n<=100000

【Solution】

  虽然A了但还是很想吐槽,这题竟然是个数学问题...

  首先先枚举每条可能的第一条路。对于某一种可能的第一条路,其余点的排列方式有(n-1)!种,所以这条路对所有以这条路为起点的路径的贡献和为(n-1)*dist[i]。

  对于某一条路i--j,其余(n-2)个点的排列方式有(n-2)种,而这条路可以插入的位置有n-1种,所以这条路对所有带这条路的路径的贡献和为(n-2)!*(n-1)*abs(dist[i]-dist[j])=(n-1)!*abs(dist[i]-dist[j])。

  根据以上两种情况,路径和=

  现在的问题就是怎么求加号后面的那一坨了。

  我们将dist从大到小排序,排序后忽略的情况在最后求出路径和乘二即可。用S[i]表示到i的所有路程和。我们发现:

  S2 = dist[1] - dist[2]

  S3 = dist[1] - dist[3] + dist[2] - dist[3] = (dist[1] - dist[2] + dist[2] - a3) + dist[2] - dist[3] = S2 + 2 *(dist[2] - dist[3])

  S4 = dist[1] - dist[4] + dist[2] - dist[4] + dist[3] - dist[4] = (dist[1] - dist[3] + dist[3] - dist[4]) + (dist[2] - dist[3] + dist[3] - dist[4]) + (dist[3] - dist[4]) = S3 + 3 * (dist[3] - dist[4])

  不难看出,S[i]可以由递推求出,递推式为S[i]=S[i-1]+(i-1)*(dist[i-1]-dist[i])。虽然式子里还要乘个(n-1)!,但是由于分子为n!,约一下分母上的(n-1)!消掉了,分子变成n,求个gcd分子分母一除输出答案就行了。

  AC代码:

 #include <cstdio>
#include <algorithm>
using namespace std;
int N;
int dist[];
long long sum,ans;
long long recs[];
void input(){
scanf("%d",&N);
for(int i=;i<=N;++i) scanf("%d",&dist[i]);
}
int cmp(const int a,const int b){
return a>b;
}
long long gcd(long long x,int y){
long long ys=;
while(ys!=){
ys=x%y;
x=y;
y=ys;
}
return x;
}
int main(){
input();
for(int i=;i<=N;++i) sum+=dist[i];
sort(dist+,dist++N,cmp); recs[]=dist[]-dist[];
for(int i=;i<=N;++i)
recs[i]=recs[i-]+(i-)*(dist[i-]-dist[i]);
for(int i=;i<=N;++i) ans+=recs[i];
ans=ans*+sum;
long long k=gcd(ans,N);
printf("%I64d %I64d",ans/k,N/k);
return ;
}

【NOIP模拟赛】【数学真奇妙】【递推】旅行者问题的更多相关文章

  1. noip 模拟赛 After 17(递推+特殊的技巧)

    来源:Violet_II T1 好神的一题,我竟然没做出来QAQ 首先我们发现,答案是sigma(x[i]*x[j], i>j)+sigma(y[i]*y[j], i>j).显然只需要讨论 ...

  2. [wikioi 1418]铃仙•优昙华院稻叶(东方幻想乡系列模拟赛)(树上递推)

    题目:http://www.wikioi.com/problem/1418/ 分析: 一看就肯定是树上的递推 设f[i][j][k]表示第i秒在k点(从j点走过来的)的概率 则f[i][j][k]=f ...

  3. 2017-9-22 NOIP模拟赛[xxy][数论]

    XXY 的 的 NOIP 模拟赛 4 4 —— 数学专场 A Description定义 f(x)表示 x 的约数和,例:f(12)=1+2+3+4+6+12=28给出 x,y,求Σf(i),i∈[x ...

  4. NOIP模拟赛-2018.11.6

    NOIP模拟赛 今天想着反正高一高二都要考试,那么干脆跟着高二考吧,因为高二的比赛更有技术含量(我自己带的键盘放在这里). 今天考了一套英文题?发现阅读理解还是有一些困难的. T1:有$n$个点,$m ...

  5. CH Round #52 - Thinking Bear #1 (NOIP模拟赛)

    A.拆地毯 题目:http://www.contesthunter.org/contest/CH%20Round%20%2352%20-%20Thinking%20Bear%20%231%20(NOI ...

  6. 2014-10-31 NOIP模拟赛

        10.30 NOIp  模拟赛   时间 空间 测试点 评测方式 挖掘机(dig.*) 1s 256M 10 传统 黑红树(brtree.*) 2s 256M 10 传统 藏宝图(treas. ...

  7. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  8. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  9. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  10. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

随机推荐

  1. 孤荷凌寒自学python第四十八天通用同一数据库中复制数据表函数最终完成

    孤荷凌寒自学python第四十八天通用同一数据库中复制数据表函数最终完成 (完整学习过程屏幕记录视频地址在文末) 今天继续建构自感觉用起来顺手些的自定义模块和类的代码. 今天经过反复折腾,最终基本上算 ...

  2. springboot04 Ajax json Jquery

    一.Ajax 1.同步&异步请求 在所有的请求响应交互世界里,我们有通常会划分出来两种形态的请求, 一种是同步请求.另一种是异步请求 .比如注册.登录.添加数据等等这些请求执行的就是同步请求, ...

  3. UVa 11806 - Cheerleaders (组合计数+容斥原理)

    <训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...

  4. 再看数据库——(5)Group By与Order By

    在使用sql语句时,很多人都会分不清order by与group by,其实简单的说: order by -- 排序 group by --分组 1.order by是行的排序,默认为升序. 有两种方 ...

  5. altium designer同一工程多个原理图如何快速查找同一网络标号

    方法一:如果只知道网络标号的名称,尚未找到任何一个,可以:Ctrl+F,输入网络标号名称,可按顺序逐个查看各个网络标号. 方法二:如果已经看到一个所要查找的网络标号,可以:按住Alt键不放,鼠标左键单 ...

  6. [bzoj] 1043 下落的圆盘 || 圆上的“线段覆盖”

    原题 n个圆盘,求下落后能看到的总周长. 红色即为所求 借鉴于黄学长的博客 对于每下落的一个圆盘,处理他后面的圆盘会挡住哪些区域,然后把一整个圆(2\(/pi\))当做一整个区间,每个被覆盖的部分都可 ...

  7. 异或值 xor

    题目描述 给出一个 N 个点的带权无向图,要求从 1 号点到 N 号点的一条路径,使得路径上的边 权异或值最大. 输入格式 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M ...

  8. Tomcat学习笔记(四)

    Servlet容器部分 servlet容器用来处理请求servlet资源,并为web客服端填充response对象模块,在tomcat中,共有4种类型的容器,分别是:Engine.Host.Conte ...

  9. bzoj [Sdoi2014]数数 AC自动机上dp

    [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1264  Solved: 636[Submit][Status][Discu ...

  10. FastDfs java客户端上传、删除文件

    #配置文件 connect_timeout = 2 network_timeout = 30 charset = UTF-8 http.tracker_http_port = 9090 http.an ...