题目大意:
  有$n$个正整数$x_1,x_2,\ldots,x_n$,再给出一些限制条件,限制条件分为两类:
    1.给出$A,B$,要求满足$X_A+1=X_B$;
    2.给出$C,D$,要求满足$X_C\leq X_D$。
  其中第1类限制条件有$m_1$个,第2类限制条件有$m_2$个。
  问这些限制条件是否能都被满足,如果能,求集合$\{x_i\}$大小的最大值。

思路:
  不难想到这是一个差分约束模型。
  对于第1类限制,连一条权值为$1$的边$A\to B$,和一条权值为$-1$的边$B\to A$。
  对于第2类限制,连一条权值为$0$的边$C\to D$。
  这种连边方法很经典,难点在于连边以后如何求出集合大小的最大值。
  对于同一个SCC,我们只要跑一下最长路就可以唯一确定当前SCC的权值集合大小,因此我们可以先跑一遍Tarjan,然后Floyd求最长路。
  考虑不同SCC的关系。
  Tarjan缩完点以后就变成了一个DAG,且DAG上的边一定对应第2类限制(不然一定对称,就变成SCC了)。
  我们不妨假设不同SCC中的权值互不重叠,那么我们只需要将所有SCC的答案加起来即可。

 #include<stack>
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int inf=0x7fffffff;
const int N=;
struct Edge {
int to,w;
};
bool ins[N];
std::stack<int> s;
std::vector<Edge> e[N];
int dis[N][N],low[N],dfn[N],scc[N];
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
}
void tarjan(const int &x) {
low[x]=dfn[x]=++dfn[];
s.push(x);
ins[x]=true;
for(unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to;
if(!dfn[y]) {
tarjan(y);
low[x]=std::min(low[x],low[y]);
} else if(ins[y]) {
low[x]=std::min(low[x],dfn[y]);
}
}
if(low[x]==dfn[x]) {
scc[]++;
int y=;
while(y!=x) {
ins[y=s.top()]=false;
s.pop();
scc[y]=scc[];
}
}
}
int main() {
const int n=getint(),m1=getint(),m2=getint();
for(register int i=;i<=n;i++) {
for(register int j=;j<=n;j++) {
if(i!=j) {
dis[i][j]=-inf;
}
}
}
for(register int i=;i<m1;i++) {
const int u=getint(),v=getint();
add_edge(u,v,);
add_edge(v,u,-);
dis[u][v]=std::max(dis[u][v],);
dis[v][u]=std::max(dis[v][u],-);
}
for(register int i=;i<m2;i++) {
const int u=getint(),v=getint();
add_edge(u,v,);
dis[u][v]=std::max(dis[u][v],);
}
for(register int i=;i<=n;i++) {
if(!dfn[i]) {
tarjan(i);
}
}
int ans=;
for(register int c=;c<=scc[];c++) {
for(register int k=;k<=n;k++) {
if(scc[k]!=c) continue;
for(register int i=;i<=n;i++) {
if(scc[i]!=c||dis[i][k]==-inf) continue;
for(register int j=;j<=n;j++) {
if(scc[j]!=c||dis[k][j]==-inf) continue;
dis[i][j]=std::max(dis[i][j],dis[i][k]+dis[k][j]);
}
}
}
int tmp=;
for(register int i=;i<=n;i++) {
if(scc[i]!=c) continue;
for(register int j=;j<=n;j++) {
if(scc[j]!=c) continue;
tmp=std::max(tmp,std::abs(dis[i][j]));
}
}
ans+=tmp+;
}
for(register int i=;i<=n;i++) {
if(dis[i][i]) {
puts("NIE");
return ;
}
}
printf("%d\n",ans);
return ;
}

[POI2012]Festival的更多相关文章

  1. [BZOJ2788][Poi2012]Festival

    2788: [Poi2012]Festival Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 187  Solved: 91[Submit][Statu ...

  2. [Poi2012]Festival 题解

    [Poi2012]Festival 时间限制: 1 Sec  内存限制: 64 MB 题目描述 有n个正整数X1,X2,...,Xn,再给出m1+m2个限制条件,限制分为两类: 1. 给出a,b (1 ...

  3. [Poi2012]Festival 差分约束+tarjan

    差分约束建图,发现要在每个联通块里求最长路,600,直接O(n3) floyed #include<cstdio> #include<cstring> #include< ...

  4. bzoj 2788 [Poi2012]Festival 差分约束+tarjan+floyd

    题目大意 有n个正整数X1,X2,...,Xn,再给出m1+m2个限制条件,限制分为两类: 1.给出a,b (1<=a,b<=n),要求满足Xa + 1 = Xb 2.给出c,d (1&l ...

  5. POI2012题解

    POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...

  6. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. 2795: [Poi2012]A Horrible Poem

    2795: [Poi2012]A Horrible Poem Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 484  Solved: 235[Subm ...

  9. [BZOJ2803][Poi2012]Prefixuffix

    2803: [Poi2012]Prefixuffix Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 219  Solved: 95[Submit][St ...

随机推荐

  1. 孤荷凌寒自学python第十天序列之字符串的常用方法

    孤荷凌寒自学python第十天序列之字符串的常用方法 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) Python的字符串操作方法非常丰富,原生支持字符串的多种操作: 1 查找子字符串 str ...

  2. PHP页面跳转总结

    一.使用php内置函数:header()函数 <?php$url='./test.php'; header("Location:$url"); ?> 注意Locatio ...

  3. 网络--OSI七层模型详解

    OSI 七层模型通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯,因此其最主要的功能就是帮助不同类型的主机实现数据传输 . 完成中继功能的节点通常称为中继系统.在OSI七层模型中,处于 ...

  4. 【现代程序设计】homework-02

    迟交了这么久,一定是0分了.可是我再怎么挣扎,还是不会.交了一维和二维的,这里说说思路吧.. 对于二维的情况,主要的思路就是将二维数组求矩形最大子数组的情况转化为一维的情况.因为所求的是矩形,我们就可 ...

  5. CodeForces Round #515 Div.3 D. Boxes Packing

    http://codeforces.com/contest/1066/problem/D Maksim has nn objects and mm boxes, each box has size e ...

  6. js动态生成下拉列表

    经常需要用到js动态生成下拉列表的功能,记录下来备用. 示例需求:通过ajax请求,从后台获取用户姓名列表,并添加到下拉列表中.js代码如下: function getNameList(){ //如果 ...

  7. http和Tcp的长连接和短连接

    . http协议和tcp/ip 协议的关系(1) http是应用层协议,tcp协议是传输层协议,ip协议是网络协议.(2) IP协议主要解决网络路由和寻址问题(3) tcp协议主要解决在IP层协议之上 ...

  8. redis cluster管理工具redis-trib.rb详解

    redis cluster管理工具redis-trib.rb详解 来源 http://weizijun.cn/2016/01/08/redis%20cluster%E7%AE%A1%E7%90%86% ...

  9. 2-SAT学习整理

    关于2-SAT 问题给出的证明和思路就不再赘述 核心是对于问题给出的条件建图,然后跑tarjan缩点 (在一个强联通分量里bool值是相同的) 看集合两个元素是否在一个强联通分量来判断是否合法 利用强 ...

  10. 雅礼集训 Day1 T2 折射

    折射 题目描述 小\(\mathrm{Y}\)十分喜爱光学相关的问题,一天他正在研究折射. 他在平面上放置了\(n\)个折射装置,希望利用这些装置画出美丽的折线. 折线将从某个装置出发,并且在经过一处 ...