蛤蛤,终于基本上搞懂了

#include<iostream>
#include<cstdio>
using namespace std;
long long num[10]={0,2,3,5,7,11,13,17,19};
long long mul(long long a,long long b,long long p)
{
long long ans=1;
a=a%p;
while(b)
{
if(b&1)
ans=(ans*a)%p;
b>>=1;
a=(a*a)%p;
}
return ans;
}
bool test(long long a)
{
if(a==2)
return true;
if(a%2==0||a==1)
return false;
for(int i=1;i<=8;i++)
if(a==num[i])
return true;
long long t=0,temp=a-1,now;
while((temp&1)==0)
{
temp>>=1;
t+=1;
}
for(int i=1;i<=8;i++)
{
now=mul(num[i],temp,a);
long long nxt=now;
for(int i=1;i<=t;i++)
{
nxt=(now*now)%a;
if(nxt==1&&now!=1&&now!=a-1)
return false;
now=nxt;
}
if(now!=1)
return false;
}
return true;
}
int main()
{
long long n,m;
scanf("%lld%lld",&n,&m);
long long pass;
for(int i=1;i<=m;i++)
{
scanf("%lld",&pass);
if(test(pass))
printf("Yes\n");
else
printf("No\n");
}
}

Miller rabin的更多相关文章

  1. POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)

    题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这 ...

  2. POJ1811- Prime Test(Miller–Rabin+Pollard's rho)

    题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...

  3. poj 1811 Pallor Rho +Miller Rabin

    /* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...

  4. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  5. Miller Rabin算法详解

    何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重 ...

  6. 与数论的厮守01:素数的测试——Miller Rabin

    看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...

  7. $Miller Rabin$总结

    \(Miller Rabin\)总结: 这是一个很高效的判断质数的方法,可以在用\(O(logn)\) 的复杂度快速判断一个数是否是质数.它运用了费马小定理和二次探测定理这两个筛质数效率极高的方法. ...

  8. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  9. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  10. Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法

    BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][ ...

随机推荐

  1. Silverlight 用DependencyProperty 自定义ImageButton控件 定义属性

    为ImageButton自定义IconSource和Contents属性 xaml代码 <UserControl x:Class="SilverlightCreate.Silverli ...

  2. 垃圾收集GC

    一.引用计数法给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1:当引用失效时,计数器值就减1:任何时刻计数器为0的对象就是不能再被使用的.引用计数法实现简单,判定效率也很高,但是它很 ...

  3. python 使用csv.reader和csv.writer读写文件并转换成dataframe格式

    import csv import pandas as pd ###csv.reader用法 ''' f=open(r"C:\Users\admin\pycdtest\wanyue\yuee ...

  4. Python 元组 (tuple)

    作者博文地址:https://www.cnblogs.com/liu-shuai/ Python的元组与列表类似,同样可通过索引访问,支持异构,任意嵌套.不同之处在于元组的元素不能修改.元组使用小括号 ...

  5. MongoDB + express + node + bootstrap 搭建多人博客

    这篇博客讲述如何搭建一个多人博客,需要一定的基础知识,用于思路整理和备忘. 第一步: 新建文件夹 blog ,结构如下: bin --- 可执行二进制文件,最终的启动接口. models --- 存储 ...

  6. Tomcat启动时报错:“ Error starting static Resources”问题解决

    部署测试环境的时候,需要用到Tomcat.故在Linux上部署了Tomcat,并将开发提供的工程包部署到Tomcat的webapps目录下,启动Tomcat,部署成功.第二天修改工程配置文件时,发现w ...

  7. Weblogic中配置Active Directory Authentication Provider

    其要点或者容易出错的关键点是:(<>及其中说明代表需要替换的内容)         Host: ads.yourdomain.com         Host填AD服务器的域名或IP    ...

  8. 浅谈SQL Server中的三种物理连接操作(Nested Loop Join、Merge Join、Hash Join)

    简介 在SQL Server中,我们所常见的表与表之间的Inner Join,Outer Join都会被执行引擎根据所选的列,数据上是否有索引,所选数据的选择性转化为Loop Join,Merge J ...

  9. 如何修改eclipse的web项目默认浏览器

  10. pdf word excel ppt 在线预览方案收集

    https://www.idocv.com/docs.html http://www.cnblogs.com/wolf-sun/p/3569960.html http://coolwanglu.git ...