洛谷 P2715 约数和
给出a和b求a^b的约数和。
题目描述
输入输出格式
输入格式:
一行两个数a,b。
输出格式:
一个数表示结果对 9901 的模。
输入输出样例
2 3
15
说明
对于 30%的数据,a,b≤ 10 对于 100%的数据,0 ≤ a,b ≤ 50 000 000
早上听大爷讲完数论马上回来补了一道
这题呢 我们首先可以吧a质因数分解 表示为p1^c1 × p2^c2 ×……× pn^cn
那么a^b就可以表示为p1^(c1*B) × p2^(c2*B) ×……× pn^(cn*B)
A^B的约数表示为p1^k1 × p2^k2 ×……× pn^kn,其中0<=ki<=ci*B
那么所有的约数和就是(1+p1+p1^2+……+p1^(c1*B)) × (1+p2+p2^2+……+p2^(c2*B)) ×……× (1+pn+pn^2+……+pn^(cn*B))
这个拿乘法定律什么的搞一下就可以得到了哇
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int mod=;
LL read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL n,m,ans=;
LL sum[],h[],cnt;
LL qmod(LL a,LL b){
LL ans=;
while(b){
if(b&) ans=ans*a%mod;
b>>=; a=a*a%mod;
}
return ans;
}
void prepare(){
LL v=n;
for(int i=;i<=v;i++)if(n%i==){
sum[++cnt]=i;
h[cnt]++;
n/=i;
while(n%i==) h[cnt]++,n/=i;
h[cnt]*=m;
if(!n) return ;
}
}
int main()
{
n=read(); m=read(); prepare();
//for(int i=1;i<=cnt;i++) printf("[%lld %lld]\n",sum[i],h[i]);
for(int i=;i<=cnt;i++){
LL q=qmod(sum[i]-,mod-),p=qmod(sum[i],h[i]+)-;
ans=ans*p%mod*q%mod;
}printf("%lld\n",ans);
return ;
}
洛谷 P2715 约数和的更多相关文章
- 洛谷 [P1403] 约数研究
本题的思想很好,正难则反 首先如果暴力枚举每个数的约数个数,一定会超时,那么我们就从约数的角度考虑,题目中问的是1~n的约数个数和,那么我们就枚举约数,看每个约数在1~n中出现过几次. #includ ...
- 洛谷 [SDOI2015]约数个数和 解题报告
[SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...
- 洛谷 P2424 约数和
题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...
- 洛谷 - P2424 - 约数和 - 整除分块
https://www.luogu.org/problemnew/show/P2424 记 \(\sigma(n)\) 为n的所有约数之和,例如 \(\sigma(6)=1+2+3+6=12\) . ...
- 洛谷 - P1403 - 约数研究 - 数论
https://www.luogu.org/problemnew/show/P1403 可以直接用线性筛约数个数求出来,但实际上n以内i的倍数的个数为n/i的下整,要求的其实是 $$\sum\limi ...
- 洛谷—— P2424 约数和
https://www.luogu.org/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f ...
- 洛谷P2424 约数和 题解
题目 约数和 题解 此题可以说完全就是一道数学题,不难看出这道题所求的是 \(\sum\limits_{i=x}^{y}{\sum\limits_{d|i}{d}}\) 的值. 很显然,用暴力枚举肯定 ...
- 洛谷P3327 约数个数和 结论+莫比乌斯反演
原题 就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数) 首先有引理(然而并没有证明): \(d(ij)= ...
- 洛谷P1403 约数研究【思维】
题目:https://www.luogu.org/problemnew/show/P1403 题意: 定义$f(n)$为n的因子个数.给定一个数n,求$f(1)$到$f(n)$之和. 思路: 最直接的 ...
随机推荐
- PHP 二维数组按某一个键值排序
一.前言 在某个项目中,需要读取某个文件夹下的所有文件,在本地的 Windows 环境下时,读取出来的二维数组的文件名称和在 Windows 文件夹的文件排序一致, 但是项目上线后,环境为 Linux ...
- ubuntu安装tomcat7
1. 下载apache-tomcat-7.0.64.tar.gz 进入tomcat官网:http://tomcat.apache.org/download-70.cgi下载相应的压缩包: 2. 上传安 ...
- ERROR 1005 (HY000): Can't create table 'students.#sql-d9
今天在创建外键的时候出现以下错误 ERROR 1005 (HY000): Can't create table 'students.#sql-d99_3' (errno: 150) 格式 ...
- linux基础命令3(man)
Type:显示指定的命令是那种类型. Linux下有两种模式的时间 date:用于系统时间管理.(软件操作的系统时 ...
- python基础之正则表达式爬虫应用,configparser模块和subprocess模块
正则表达式爬虫应用(校花网) 1 import requests 2 import re 3 import json 4 #定义函数返回网页的字符串信息 5 def getPage_str(url): ...
- TouTiao开源项目 分析笔记19 问答内容
1.真实页面预览 1.1.成果预览 首先是问答列表 然后每个item设置点击事件,进入问答内容列表 然后每一个问答内容也设置点击事件,进入问答详情 1.2.触发事件. 在WendaArticleOne ...
- JS是如何计算 1+1=2 的?
身为程序员多年,作者今天突然对这件事感到十分好奇了.我问计算机芸芸部件,1+1究竟是如何计算的,他们都茫然的看着我. 打开谷歌浏览器->Console面板,大脑向双手不停发送生物电信号,肌肉细胞 ...
- windows 定时任务 - 定时关机
添加定时关机,刚好可以利用windows定时任务 [开始]->[控制面板]->[任务计划]->[添加任务计划] 1.找到 shutdown.exe 设置每天执行 2.设置晚上10点 ...
- 《Cracking the Coding Interview》——第7章:数学和概率论——题目2
2014-03-20 01:59 题目:有n只蚂蚁在正n边形的n个顶点,同时以同速率开始沿着边走.每只蚂蚁走的方向是随机的,那么这些蚂蚁至少有两只发生碰撞的概率是多少. 解法:只有所有蚂蚁都往一个方向 ...
- 【Dual Support Vector Machine】林轩田机器学习技法
这节课内容介绍了SVM的核心. 首先,既然SVM都可以转化为二次规划问题了,为啥还有有Dual啥的呢?原因如下: 如果x进行non-linear transform后,二次规划算法需要面对的是d`+1 ...