给出a和b求a^b的约数和。

题目描述

输入输出格式

输入格式:

一行两个数a,b。

输出格式:

一个数表示结果对 9901 的模。

输入输出样例

输入样例#1:

2 3
输出样例#1:

15

说明

对于 30%的数据,a,b≤ 10 对于 100%的数据,0 ≤ a,b ≤ 50 000 000

早上听大爷讲完数论马上回来补了一道

这题呢 我们首先可以吧a质因数分解 表示为p1^c1 × p2^c2 ×……× pn^cn

那么a^b就可以表示为p1^(c1*B) × p2^(c2*B) ×……× pn^(cn*B)

A^B的约数表示为p1^k1 × p2^k2 ×……× pn^kn,其中0<=ki<=ci*B

那么所有的约数和就是(1+p1+p1^2+……+p1^(c1*B)) × (1+p2+p2^2+……+p2^(c2*B)) ×……× (1+pn+pn^2+……+pn^(cn*B))

这个拿乘法定律什么的搞一下就可以得到了哇

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int mod=;
LL read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL n,m,ans=;
LL sum[],h[],cnt;
LL qmod(LL a,LL b){
LL ans=;
while(b){
if(b&) ans=ans*a%mod;
b>>=; a=a*a%mod;
}
return ans;
}
void prepare(){
LL v=n;
for(int i=;i<=v;i++)if(n%i==){
sum[++cnt]=i;
h[cnt]++;
n/=i;
while(n%i==) h[cnt]++,n/=i;
h[cnt]*=m;
if(!n) return ;
}
}
int main()
{
n=read(); m=read(); prepare();
//for(int i=1;i<=cnt;i++) printf("[%lld %lld]\n",sum[i],h[i]);
for(int i=;i<=cnt;i++){
LL q=qmod(sum[i]-,mod-),p=qmod(sum[i],h[i]+)-;
ans=ans*p%mod*q%mod;
}printf("%lld\n",ans);
return ;
}

洛谷 P2715 约数和的更多相关文章

  1. 洛谷 [P1403] 约数研究

    本题的思想很好,正难则反 首先如果暴力枚举每个数的约数个数,一定会超时,那么我们就从约数的角度考虑,题目中问的是1~n的约数个数和,那么我们就枚举约数,看每个约数在1~n中出现过几次. #includ ...

  2. 洛谷 [SDOI2015]约数个数和 解题报告

    [SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...

  3. 洛谷 P2424 约数和

    题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...

  4. 洛谷 - P2424 - 约数和 - 整除分块

    https://www.luogu.org/problemnew/show/P2424 记 \(\sigma(n)\) 为n的所有约数之和,例如 \(\sigma(6)=1+2+3+6=12\) . ...

  5. 洛谷 - P1403 - 约数研究 - 数论

    https://www.luogu.org/problemnew/show/P1403 可以直接用线性筛约数个数求出来,但实际上n以内i的倍数的个数为n/i的下整,要求的其实是 $$\sum\limi ...

  6. 洛谷—— P2424 约数和

    https://www.luogu.org/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f ...

  7. 洛谷P2424 约数和 题解

    题目 约数和 题解 此题可以说完全就是一道数学题,不难看出这道题所求的是 \(\sum\limits_{i=x}^{y}{\sum\limits_{d|i}{d}}\) 的值. 很显然,用暴力枚举肯定 ...

  8. 洛谷P3327 约数个数和 结论+莫比乌斯反演

    原题 就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数) 首先有引理(然而并没有证明): \(d(ij)= ...

  9. 洛谷P1403 约数研究【思维】

    题目:https://www.luogu.org/problemnew/show/P1403 题意: 定义$f(n)$为n的因子个数.给定一个数n,求$f(1)$到$f(n)$之和. 思路: 最直接的 ...

随机推荐

  1. java多线程批量读取文件(七)

    新公司入职一个多月了,至今没有事情可以做,十来个新同事都一样抓狂,所以大家都自己学习一些新东西,我最近在看zookeeper,感觉蛮不错的,和微服务的zuul以及eureka功能类似,只是代码复杂了一 ...

  2. flask-login原理详解

    最近发现项目中使用的flask-login中有些bug,直接使用官网的方式确实可以用,但仅仅是可以用,对于原理或解决问题没有什么帮助,最近通过查看网上资料.分析源码.通过demo.从零开始总结了fla ...

  3. 1,flask简介

    一. Python 现阶段三大主流Web框架 Django Tornado Flask 对比 1.Django 主要特点是大而全,集成了很多组件,例如: Models Admin Form 等等, 不 ...

  4. Unity Occlusion Culling 遮挡剔除研究

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/52684127 作者:car ...

  5. poj3348 Cows 凸包 叉积求多边形面积

    graham扫描法,参考yyb #include <algorithm> #include <iostream> #include <cstdio> #includ ...

  6. long转int

    由int类型转换为long类型是向上转换,可以直接进行隐式转换,但由long类型转换为int类型是向下转换,可能会出现数据溢出情况: 主要以下几种转换方法,供参考: 一.强制类型转换 [java] l ...

  7. 《Cracking the Coding Interview》——第18章:难题——题目7

    2014-04-29 03:05 题目:给定一个词典,其中某些词可能能够通过词典里其他的词拼接而成.找出这样的组合词里最长的一个. 解法:Leetcode上有Word Break这道题,和这题基本思路 ...

  8. 《Cracking the Coding Interview》——第13章:C和C++——题目2

    2014-04-25 19:29 题目:对比一下哈希表和STL中的map的区别,哈希表如何实现?如果数据规模比较小,可以用什么来代替哈希表? 解法:哈希表可以理解为一堆桶,每个桶都有唯一的id,桶里可 ...

  9. 《Cracking the Coding Interview》——第13章:C和C++——题目1

    2014-04-25 19:13 题目:用C++写一个读取文件倒数K行的方法. 解法:因为是要取倒数K行,所以我的思路是一行一行地读.过程中需要保存一个长度为K的链表,每次新读到一行都将表头节点移到表 ...

  10. Unity-SendMessage

    每一个对象都有SendMessage,BroadcastMessage,SendMessageUpwards 三个发送消息的方法! 1.功能: 执行某个对象中的某个方法!   2.实现原理 反射   ...