大步小步算法用于解决:已知A, B, C,求X使得

A^x = B (mod C)

成立。

我们令x = im - j | m = ceil(sqrt(C)), i = [1, m], j = [0, m]

那么原式就变成了:

A^(i
m) = A^j * B

我们先枚举j,把A^j * B加入哈希表

然后枚举i,在表中查照A^(i*m),如果找到了,那么就找到了一个解。

算法的复杂度为O(n^0.5)

代码:

#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll p, a, b, X1, t, T;
ll pow(ll a, ll b, ll p) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % p;
b >>= 1;
a = a * a % p;
}
return ans;
}
ll inv(ll a, ll p) {
return pow(a, p-2, p);
}
map<ll, ll> mp;
ll BSGS(ll A, ll B, ll C) {
mp.clear();
if(A % C == 0) return -2;
ll m = ceil(sqrt(C));
ll ans;
for(int i = 0; i <= m; i++) {
if(i == 0) {
ans = B % C;
mp[ans] = i;
continue;
}
ans = (ans * A) % C;
mp[ans] = i;
}
ll t = pow(A, m, C);
ans = t;
for(int i = 1; i <= m; i++) {
if(i != 1)ans = ans * t % C;
if(mp.count(ans)) {
int ret = i * m % C - mp[ans] % C;
return (ret % C + C)%C;
}
}
return -2;
}
int main() {
// freopen("input", "r", stdin);
scanf("%lld", &T);
while(T--) {
scanf("%lld %lld %lld %lld %lld", &p, &a, &b, &X1, &t);
if(X1 == t) {
printf("%d\n", 1);
continue;
}
if(a == 0) {
if(t == b) {
printf("%d\n", 2);
}
else printf("%d\n", -1);
continue;
}
if(a == 1) {
if(b == 0) {
printf("%d\n", -1);
continue;
}
ll ans = (((t-X1)%p + p)%p * inv(b, p)) % p;
printf("%lld\n", ans+1);
continue;
}
X1 %= p, a %= p, b %= p, t%= p;
ll tmp = (b%p * inv(a-1, p))%p;
ll B = ((t+tmp)%p * inv((X1+tmp) % p, p)) % p;
ll A = a;
ll ans = BSGS(A, B, p);
printf("%lld\n", ans+1);
}
return 0;
}

[模板]大步小步算法——BSGS算法的更多相关文章

  1. 【算法】BSGS算法

    BSGS算法 BSGS算法用于求解关于x的模方程\(A^x\equiv B\mod P\)(P为质数),相当于求模意义下的对数. 思想: 由费马小定理,\(A^{p-1}\equiv 1\mod P\ ...

  2. 离散对数及其拓展 大步小步算法 BSGS

    离散对数及其拓展 离散对数是在群Zp∗Z_{p}^{*}Zp∗​而言的,其中ppp是素数.即在在群Zp∗Z_{p}^{*}Zp∗​内,aaa是生成元,求关于xxx的方程ax=ba^x=bax=b的解, ...

  3. 大步小步算法模板题, poj2417

    大步小步模板 (hash稍微有一点麻烦, poj不支持C++11略坑) #include <iostream> #include <vector> #include <c ...

  4. BSGS-Junior·大步小步算法

    本文原载于:http://www.orchidany.cf/2019/02/06/BSGS-junior/#more \(\rm{0x01}\) \(\mathcal{Preface}\) \(\rm ...

  5. 离散对数&&大步小步算法及扩展

    bsgs algorithm ax≡b(mod n) 大步小步算法,这个算法有一定的局限性,只有当gcd(a,m)=1时才可以用 原理 此处讨论n为素数的时候. ax≡b(mod n)(n为素数) 由 ...

  6. 【题解】Matrix BZOJ 4128 矩阵求逆 离散对数 大步小步算法

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4128 大水题一道 使用大步小步算法,把数字的运算换成矩阵的运算就好了 矩阵求逆?这么基础的线 ...

  7. BSGS算法(模板)

    BSGS (大步小步算法) 已知\(a.b. c\),求\(x\).令\(a^x \equiv b \pmod c\). 步骤 \[m = \lceil \sqrtc\ \rceil \]\[x = ...

  8. uva11916 bsgs算法逆元模板,求逆元,组合计数

    其实思维难度不是很大,但是各种处理很麻烦,公式推导到最后就是一个bsgs算法解方程 /* 要给M行N列的网格染色,其中有B个不用染色,其他每个格子涂一种颜色,同一列上下两个格子不能染相同的颜色 涂色方 ...

  9. BSGS算法(大小步算法)

    $BSGS$ 算法 $Baby\ Steps\ Giant\ Steps$. 致力于解决给定两个互质的数 $a,\ p$ 求一个最小的非负整数 $x$ 使得 $a^x\equiv b(mod\ p)$ ...

随机推荐

  1. python学习之数据类型与运算符号

    python版本:3.6 python编辑器:pycharm 最新版本 整理成代码如下: #!/usr/bin/env python #-*- coding: utf-8 -*- # 数学操作符 pr ...

  2. C++基础 C++对类的管理——封装

    1.封装 两层含义: (1)把事物的属性和方法结合成个整体. (2)对类的属性和方法进行访问控制,对不信的进行信息屏蔽. 2.访问控制 控制分为 类的内部,类的外部. public 修饰的成员,可在内 ...

  3. 猜数字问题 python

    猜数字问题,要求如下: ① 随机生成一个整数 ② 猜一个数字并输入 ③ 判断是大是小,直到猜正确 ④ 判断时间提示:需要用time模块.random模块该题目不需要创建函数 import random ...

  4. POJ:2785-4 Values whose Sum is 0(双向搜索)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 26974 Accepted: ...

  5. 强烈推荐android初学者,android进阶者看看这个系列教程

    强烈推荐android初学者,android进阶者看看这个系列教程 转载 2015年05月30日 23:05:44 695 为什么要研究Android,是因为它够庞大,它够复杂,他激起了我作为一个程序 ...

  6. 问题:JFinal框架使用FreeMarker渲染视图报错

    本人用的是JFinal-3.4. 问题描述: 在JFinal框架中使用FreeMarker渲染视图时,报 Caused by: java.lang.ClassNotFoundException: fr ...

  7. Python学习3,列表

    列表就是能够包含几个或者上千上万个元素,对我这种新手来说应该是最重要的了! _author_ = "Happyboy" shopping = ['Iphone','Huawei', ...

  8. Python网络编程(子进程的创建与处理、简单群聊工具)

    前言: 昨天我们已经了解了多进程的原理以及它的实际使用 Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊.普通的函数调用,调用一次,返回一次, 但是fork()调用一次,返回两次 ...

  9. Python-map、filter、reduce方法

    介绍 1.map()函数,会让列表中每一个元素都执行一某个函数(传递1个参数), 并且将执行函数返回的结果(无论是什么结果)放在结果列表中 2.filter()函数,会让列表中的每一个元素都执行一次某 ...

  10. 转:sift算法详解

    转自:http://blog.csdn.net/pi9nc/article/details/23302075 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIF ...