内容来自ufldl,代码参考自tornadomeet的cnnCost.m

1.Forward Propagation

convolvedFeatures = cnnConvolve(filterDim, numFilters, images, Wc, bc); %对于第一个箭头
activationsPooled = cnnPool(poolDim, convolvedFeatures);%对应第二个箭头 %对应第3个箭头,即平铺开
activationsPooled = reshape(activationsPooled,[],numImages); %开始计算softmax后属于各类的概率
probs = zeros(numClasses,numImages); %Wd=(numClasses,hiddenSize),probs的每一列代表一个输出
%M=Wd*ah+bd
M = Wd*activationsPooled+repmat(bd,[1,numImages]);
%这步可以省略,可以这么做的原因是 exp(a+b)=exp(a)exp(b)
M = bsxfun(@minus,M,max(M,[],1));
%M=exp(Wd*ah+bd)
M = exp(M);
%normalize
probs = bsxfun(@rdivide, M, sum(M));

2.Back propagation

% 首先需要把labels弄成one-hot编码
%对应图片中的I
groundTruth = full(sparse(labels, 1:numImages, 1)); %P-I
delta_d = -(groundTruth-probs);
%ah(P-I) ,不同处为后面加上了正规项的导数
Wd_grad = (1./numImages)*delta_d*activationsPooled'+lambda*Wd;
bd_grad = (1./numImages)*sum(delta_d,2); %注意这里是要求和 %对应图中reshape右边的 J对ah求导
delta_s = Wd'*delta_d;
delta_s=reshape(delta_s,outputDim,outputDim,numFilters,numImages); %对应途中 1/4,delta_s的每个分量,都扩展为4个
for i=1:numImages
for j=1:numFilters
delta_c(:,:,j,i) = (1./poolDim^2)*kron(squeeze(delta_s(:,:,j,i)), ones(poolDim));
end
end
%对于左下方,但此时ximage还没有乘上去
delta_c = convolvedFeatures.*(1-convolvedFeatures).*delta_c; for i=1:numFilters
Wc_i = zeros(filterDim,filterDim);
for j=1:numImages
%此处conv2非常巧妙
Wc_i = Wc_i+conv2(squeeze(images(:,:,j)),rot90(squeeze(delta_c(:,:,i,j)),2),'valid');
end
% Wc_i = convn(images,rot180(squeeze(delta_c(:,:,i,:))),'valid');
% add penalize
Wc_grad(:,:,i) = (1./numImages)*Wc_i+lambda*Wc(:,:,i); bc_i = delta_c(:,:,i,:);
bc_i = bc_i(:);
bc_grad(i) = sum(bc_i)/numImages;
end

上面conv2的正确性,可以用下面方法验证

A=rand(9,9);
B=rand(3,3);
c1=conv2(A,B,'valid'); B=zeros(3);
for i=1:7
for j=1:7
B=B+(A(i:i+2,j:j+2)*c1(i,j));
end
end
%看到B和conv2结果相同
conv2(A,rot90(c1,2),'valid')
B

cnn softmax regression bp求导的更多相关文章

  1. 【机器学习基础】对 softmax 和 cross-entropy 求导

    目录 符号定义 对 softmax 求导 对 cross-entropy 求导 对 softmax 和 cross-entropy 一起求导 References 在论文中看到对 softmax 和 ...

  2. 【机器学习】BP & softmax求导

    目录 一.BP原理及求导 二.softmax及求导 一.BP 1.为什么沿梯度方向是上升最快方向     根据泰勒公式对f(x)在x0处展开,得到f(x) ~ f(x0) + f'(x0)(x-x0) ...

  3. softmax 损失函数求导过程

    前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个qu ...

  4. 【转载】softmax的log似然代价函数(求导过程)

    全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时, ...

  5. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  6. Deep Learning基础--CNN的反向求导及练习

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  7. softmax分类器+cross entropy损失函数的求导

    softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...

  8. 前馈网络求导概论(一)·Softmax篇

    Softmax是啥? Hopfield网络的能量观点 1982年的Hopfiled网络首次将统计物理学的能量观点引入到神经网络中, 将神经网络的全局最小值求解,近似认为是求解热力学系统的能量最低点(最 ...

  9. Deep Learning基础--Softmax求导过程

    一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...

随机推荐

  1. http status 400,http 400,400 错误

    转载:http://blog.csdn.net/xu_zh_h/article/details/2294233 4 请求失败4xx 4xx应答定义了特定服务器响应的请求失败的情况.客户端不应当在不更改 ...

  2. angular 入门教程1

    使用angularjs也有一年之久了.从初识angularjs时的激动和兴奋到现在淡定的使用,这其中也是有不少的心酸(刚用的时候和各种js插件的配合使用快把我弄疯了). 细想起来.用MVVM的这种js ...

  3. [Linux]shell编程基础/linux基础入门

    声明执行程序 #!/bin/bash 用来告诉系统使用/bin/bash 程序来执行该脚本.譬如python 脚本,可以这样写: #!/usr/bin/python   赋值和引用 赋值公式: 变量名 ...

  4. Monthly Expense(二分) 分类: 二分查找 2015-06-06 00:31 10人阅读 评论(0) 收藏

    Description Farmer John is an astounding accounting wizard and has realized he might run out of mone ...

  5. git 之别名配置

    在git操作中有很多命令我们自己可以起别名,以提高操作效率. 1. 配置方式 1)项目级别的配置,仅对当前项目生效(将写入到.git/config文件中)    $ git config --glob ...

  6. android listiew适配器

    List<Map<String>> Items = new ArrayList<Map<String>>(); // 把该显示的内容放到list中 fo ...

  7. 实用CSS3属性之 :target伪类实现Tab切换效果

    CSS3 :target伪类用来改变页面中锚链接URL所指向的ID样式,例如你要改变描链接指向#tab的元素字体颜色为蓝色,哪么你可以这样写成#tab:target {color:blue} 浏览器支 ...

  8. 搭建PhoneCat项目的开发与测试环境

    AngularJS官方网站提供了一个用于学习的示例项目:PhoneCat.这是一个Web应用,用户可以浏览一些Android手机,了解它们的详细信息,并进行搜索和排序操作. 获取源代码 PhoneCa ...

  9. Performing a full database disaster recovery with RMAN

    Performing a full database disaster recovery with RMAN1. Make the RMAN backup set pieces available.2 ...

  10. ab -n -c

    ab是apache自带的一个很好用的压力测试工具,当安装完apache的时候,就可以在bin下面找到ab 1 我们可以模拟100个并发用户,对一个页面发送1000个请求 ./ab -n1000 -c1 ...