UVA 10003 Cutting Sticks 切木棍 dp
题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费。
这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗?
题目其实就是把n+1根木棍合并成一只长木棍,花费为合并后的木棍长度。
于是我很开心地用优先队列敲完代码,wa了。。。
后来发现两个木棍的序号必须是连续的,用优先队列会把序号打乱。每次删减中间的一个数又很费时间,于是想到用list+递归,就当我得意的敲出代码,过了不少代码时,它继续给我wa了。。。
我非常郁闷的在board上找样例,发现有几组是过不了的,比如:
111
10
10 17 28 30 37 44 47 49 77 94
然后我就跪了,单步去调试,发现贪心没写错。
于是跟基友讨论未果,然后在网上找到了这个:石子合并问题
看来贪心时可能会对接下去的计算产生影响,所以不一定是最优解。。。
下面才是正解 TAT:
这题只能用dp做法了。。。用d[begin][end]表示从bigin切点到end切点,这段木棍的最省钱切法,然后就模拟切中间各点,计算交给递归下一层。。。
没有后效性,记忆化搜索,子问题重叠,这三个是dp题目的基本要素。
这题让我学到很多东西,我体验了贪心并不是最优解这一惨痛事实,让我更加体会到dp的思想。
代码:
/*
* Author: illuz <iilluzen[at]gmail.com>
* Blog: http://blog.csdn.net/hcbbt
* File: _uva10003.cpp
* Create Date: 2013-09-20 16:04:57
* Descripton: dp
*/ #include <cstdio>
#include <algorithm>
using namespace std; const int MAXN = 55;
int s[MAXN], d[MAXN][MAXN], len, n; int dp(int b, int e) {
if (d[b][e] >= 0) return d[b][e];
d[b][e] = dp(b, b + 1) + dp(b + 1, e) + s[e] - s[b];
for (int i = b + 2; i < e; i++) {
int tt = dp(b, i) + dp(i, e) + s[e] - s[b];
d[b][e] = min(d[b][e], tt);
}
return d[b][e];
} int main() {
while (scanf("%d", &len) && len) {
scanf("%d", &n);
for (int i = 0; i <= n + 1; i++)
for (int j = 0; j <= n + 1; j++)
if (j - i == 1)
d[i][j] = 0;
else
d[i][j] = -1;
for (int i = 0; i < n; i++)
scanf("%d", &s[i + 1]);
s[n + 1] = len;
printf("The minimum cutting is %d.\n", dp(0, n + 1));
}
return 0;
}
UVA 10003 Cutting Sticks 切木棍 dp的更多相关文章
- UVA - 10003 Cutting Sticks(切木棍)(dp)
题意:有一根长度为L(L<1000)的棍子,还有n(n < 50)个切割点的位置(按照从小到大排列).你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每次切割的费用 ...
- uva 10003 Cutting Sticks 【区间dp】
题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...
- UVA 10003 cuting sticks 切木棍 (区间dp)
区间dp,切割dp[i][j]的花费和切法无关(无后效性) dp[i][j]表示区间i,j的花费,于是只要枚举切割方法就行了,区间就划分成更小的区间了.O(n^3) 四边形不等式尚待学习 #inclu ...
- UVa 10003 - Cutting Sticks(区间DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- uva 10003 Cutting Sticks (区间dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: 打开 题目大意 一根长为l的木棍,上面有n个"切点",每个点的位置为c[i] 要按照一 ...
- UVA 10003 Cutting Sticks 区间DP+记忆化搜索
UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...
- uva 10003 Cutting Sticks(区间DP)
题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...
- UVA 10003 Cutting Sticks(区间dp)
Description Cutting Sticks You have to cut a wood stick into pieces. The most affordable company ...
- UVA 10003 Cutting Sticks
题意:在给出的n个结点处切断木棍,并且在切断木棍时木棍有多长就花费多长的代价,将所有结点切断,并且使代价最小. 思路:设DP[i][j]为,从i,j点切开的木材,完成切割需要的cost,显然对于所有D ...
随机推荐
- 定制样式插入到ueditor
AngularJs定制样式插入到ueditor中的问题总结 总结一下自己给编辑器定制样式的过程中所遇到的问题,主要是编辑器的二次开发接口,以及用angular定制样式,问题不少,终于在**的帮助下,完 ...
- 使用StackTrace堆栈跟踪记录详细日志(可获取行号)
上一篇我们提到使用.NET自带的TraceSource实现简单的日志,具体请看<轻松背后的N+疲惫——系统日志>,这一篇注意想讲的是日志的详细记录,包含请求开始到结束的过程中调用的方法链以 ...
- python操作redis-事务
#!/usr/bin/python #!coding: utf-8 import redis import sys if __name__=="__main__": try: co ...
- SQL Server 锁的 8 种类型
第1种. 共享锁.由读取查寻产生. 第2种. 意向锁.用意向锁来表示有将要获得某一资源的意向. 第3种. 更新锁.在修改数据前获得. 第4种. 排它锁.用于独占某一资源时获得. 第5种. 架构锁.运行 ...
- delphi 操作 TWebBrowser 实现自动填表(JQuery脚本与 OleVariant 方法)
版本:DELPHI XE8 操作交通银行信用卡申请表单(2016-03-23),网址如下: https://creditcardapp.bankcomm.com/applynew/front/appl ...
- 竹林蹊径-深入浅出Windows内核开发作者的博客
http://blog.csdn.net/blog_index http://blog.csdn.net/blog_index/article/details/6012054 http://downl ...
- Servlet中Web.xml的配置详解
1 定义头和根元素 部署描述符文件就像所有XML文件一样,必须以一个XML头开始.这个头声明可以使用的XML版本并给出文件的字符编码. DOCYTPE声明必须立即出现在此头之后.这个声明告诉服务器适用 ...
- 杭电oj1236 排名
Tips:此题比较简单,最好将每一个学生的信息构建一个结构体,另外需要注意的是,若分数相同,排序按姓名排序,我看网上很多都是使用<algorithm>中的sort算法,只需重写cmp函数即 ...
- C errors recods
error: unterminated #ifndef 1,权限问题 2,少了#endif
- Linux内核中常见内存分配函数(三)
ioremap void * ioremap (unsigned long offset, unsigned long size) ioremap是一种更直接的内存“分配”方式,使用时直接指定物理起始 ...