Trie树(字典树) 最热门的前N个搜索关键词
方法介绍
1.1、什么是Trie树
Trie树,即字典树,又称单词查找树或键树,是一种树形结构。典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是最大限度地减少无谓的字符串比较,查询效率比较高。
Trie的核心思想是空间换时间,利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的。
它有3个基本性质:
根节点不包含字符,除根节点外每一个节点都只包含一个字符。
从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。
每个节点的所有子节点包含的字符都不相同。
1.2、树的构建
咱们先来看一个问题:假如现在给你10万个长度不超过10的单词,对于每一个单词,我们要判断它出没出现过,如果出现了,求第一次出现在第几个位置。对于这个问题,我们该怎么解决呢?
如果我们用最傻的方法,对于每一个单词,我们都要去查找它前面的单词中是否有它。那么这个算法的复杂度就是O(n^2)。显然对于10万的范围难以接受。
换个思路想:
假设我要查询的单词是abcd,那么在它前面的单词中,以b,c,d,f之类开头的显然不必考虑,而只要找以a开头的中是否存在abcd就可以了。
同样的,在以a开头中的单词中,我们只要考虑以b作为第二个字母的,一次次缩小范围和提高针对性,这样一个树的模型就渐渐清晰了。
即如果现在有b,abc,abd,bcd,abcd,efg,hii 这6个单词,我们可以构建一棵如下图所示的树:
![]()
如上图所示,对于每一个节点,从根遍历到他的过程就是一个单词,如果这个节点被标记为红色,就表示这个单词存在,否则不存在。
那么,对于一个单词,只要顺着他从根走到对应的节点,再看这个节点是否被标记为红色就可以知道它是否出现过了。把这个节点标记为红色,就相当于插入了这个单词。
这样一来我们查询和插入可以一起完成,所用时间仅仅为单词长度(在这个例子中,便是10)。这就是一棵trie树。
我们可以看到,trie树每一层的节点数是26^i级别的。所以为了节省空间,我们还可以用动态链表,或者用数组来模拟动态。而空间的花费,不会超过单词数×单词长度。
1.3、查询
Trie树是简单但实用的数据结构,通常用于实现字典查询。我们做即时响应用户输入的AJAX搜索框时,就是Trie开始。本质上,Trie是一颗存储多个字符串的树。相邻节点间的边代表一个字符,这样树的每条分支代表一则子串,而树的叶节点则代表完整的字符串。和普通树不同的地方是,相同的字符串前缀共享同一条分支。
下面,再举一个例子。给出一组单词,inn, int, at, age, adv, ant, 我们可以得到下面的Trie:
![]()
可以看出:
每条边对应一个字母。
每个节点对应一项前缀。叶节点对应最长前缀,即单词本身。
单词inn与单词int有共同的前缀“in”, 因此他们共享左边的一条分支,root->i->in。同理,ate, age, adv, 和ant共享前缀”a”,所以他们共享从根节点到节点”a”的边。
查询操纵非常简单。比如要查找int,顺着路径i -> in -> int就找到了。
搭建Trie的基本算法也很简单,无非是逐一把每则单词的每个字母插入Trie。插入前先看前缀是否存在。如果存在,就共享,否则创建对应的节点和边。比如要插入单词add,就有下面几步:
考察前缀”a”,发现边a已经存在。于是顺着边a走到节点a。
考察剩下的字符串”dd”的前缀”d”,发现从节点a出发,已经有边d存在。于是顺着边d走到节点ad
考察最后一个字符”d”,这下从节点ad出发没有边d了,于是创建节点ad的子节点add,并把边ad->add标记为d。
问题实例
1、一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析
提示 :用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平均长度),然后是找出出现最频繁的前10个词。当然,也可以用堆来实现,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个。
2、寻找热门查询
原题 :搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。
提示 :利用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。
作者:July
来源:《程序员编程艺术:面试和算法心得》
Trie树(字典树) 最热门的前N个搜索关键词的更多相关文章
- 剑指Offer——Trie树(字典树)
剑指Offer--Trie树(字典树) Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种的单词.对于每一个单词,我们要判断他出没出现过,如果出现了,求第一次出现在第几个位 ...
- AC自动机——1 Trie树(字典树)介绍
AC自动机——1 Trie树(字典树)介绍 2013年10月15日 23:56:45 阅读数:2375 之前,我们介绍了Kmp算法,其实,他就是一种单模式匹配.当要检查一篇文章中是否有某些敏感词,这其 ...
- Trie(字典树)
没时间整理了,老吕又讲课了@ @ 概念 Trie即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种,典型应用是统计和排序大量的字符串(不限于字符串) Trie字典树主要用于存储字符串, ...
- 9-11-Trie树/字典树/前缀树-查找-第9章-《数据结构》课本源码-严蔚敏吴伟民版
课本源码部分 第9章 查找 - Trie树/字典树/前缀树(键树) ——<数据结构>-严蔚敏.吴伟民版 源码使用说明 链接☛☛☛ <数据结构-C语言版>(严蔚 ...
- Trie树 - 字典树
1.1.什么是Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构.典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是最大限 ...
- Trie(前缀树/字典树)及其应用
Trie,又经常叫前缀树,字典树等等.它有很多变种,如后缀树,Radix Tree/Trie,PATRICIA tree,以及bitwise版本的crit-bit tree.当然很多名字的意义其实有交 ...
- [LintCode] Implement Trie 实现字典树
Implement a trie with insert, search, and startsWith methods. Have you met this question in a real i ...
- Trie树|字典树(字符串排序)
有时,我们会碰到对字符串的排序,若采用一些经典的排序算法,则时间复杂度一般为O(n*lgn),但若采用Trie树,则时间复杂度仅为O(n). Trie树又名字典树,从字面意思即可理解,这种树的结构像英 ...
- Trie - leetcode [字典树/前缀树]
208. Implement Trie (Prefix Tree) 字母的字典树每个节点要定义一个大小为26的子节点指针数组,然后用一个标志符用来记录到当前位置为止是否为一个词,初始化的时候讲26个子 ...
随机推荐
- Linux网络配置相关
路由相关 #添加到主机的路由 route add -host 192.168.1.2 dev eth0 route add -host 192.168.1.2 gw 192.168.1.1 注1:添加 ...
- Android Clipboard(复制/剪贴板)
Android提供的剪贴板框架,复制和粘贴不同类型的数据.数据可以是文本,图像,二进制流数据或其它复杂的数据类型. Android提供ClipboardManager.ClipData.Item和Cl ...
- Android中设置文本颜色的三种方法
最近刚开始学web,发现好的颜色搭配可以让自己的网页更加美观, 中午不想做事,就无聊滴花了两个小时测试了所有颜色的编码,总结如下 新手没有什么吊炸天的技术,仅仅是一份辅助的文档,有兴趣的朋友可以收藏下 ...
- Web服务的体系架构
Web简介: Web是WWW(World Wide Web)的简称,又称为万维网,是建立在客户机/服务器上的,以HTML语言和HTML协议为基础,提供面向Internet服务的,有一致用户界面的一种信 ...
- 获取布局 ActionBar
LayoutInflater inflater = getLayoutInflater();View imageLayout = inflater.inflate(R.layout.preferenc ...
- Linux字符设备中的两个重要结构体(file、inode)
对于Linux系统中,一般字符设备和驱动之间的函数调用关系如下图所示 上图描述了用户空间应用程序通过系统调用来调用程序的过程.一般而言在驱动程序的设计中,会关系 struct file 和 struc ...
- javascript封装id|class|元素选择器
由于各个浏览器都支持的选择方法只有如下三种: 1 document.getElementById() 2 document.getElementsByName() 3 document.getElem ...
- display属性解析
none 此元素不会被显示 block 此元素将显示为块级元素,此元素前后会带有换行符. inline 默认.此元素会被显示为内联元素,元素前后没有换行符. inline-block 行内块元素.(C ...
- Java多线程练习
国际惯例,先贴出代码 package jiankong; import java.util.Date; public class jiankong { public static void main( ...
- Segment,Path,Ring和Polyline的区别
这四者当中Segment是最小的单位,具体的构成路线可以分为两个条:Segment-Path-Ring(封闭的Path)Segment-Path-Polyline Segment 和 Path 可以说 ...