hdu 5642 King's Order(数位dp)
Now , it is war time , because of the spies from enemies , sometimes it is pretty hard for the general to tell which orders come from the king. But fortunately the general know how the king speaks: the king never repeats a letter for more than 3 times continually .And only this kind of order is legal. For example , the order: "Let the group-p-p-p three come to me" can never come from the king. While the order:" Let the group-p three come to me" is a legal statement.
The general wants to know how many legal orders that has the length of n
To make it simple , only lower case English Letters can appear in king's order , and please output the answer modulo 1000000007
We regard two strings are the same if and only if each charactor is the same place of these two strings are the same.
For each testcase, the first line and the only line contains a positive number n(n≤2000).
All the order that has length 2 are legal. So the answer is 26*26.
For the order that has length 4. The illegal order are : "aaaa" , "bbbb"…….."zzzz" 26 orders in total. So the answer for n == 4 is 26^4-26 = 456950
题意:一个长度为n的序列,并且序列中不能出现长度大于3的连续的相同的字符,求一共有多少个合法序列。
思路:用dp[i][j]表示以j结尾,长度为i的合法序列个数。我们考虑一下这个怎么转移。
以j结尾的话就三种情况,一个j结尾,两个j结尾,三个j结尾。
如果是三个j结尾的话我们可以确定下来,长度为i的后三位是j,倒数第4位不可以是j,所以就是∑dp[i-3][k](k!=j),
同理考虑两个j结尾和一个j结尾,那么转移方程就是:dp[i][j] = ∑dp[i-1][k] + ∑dp[i-2][k] + ∑dp[i-3][k]
AC代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 2006
#define inf 1e12
ll n;
ll dp[N][];
void init(){
dp[][]=;
for(ll i=;i<;i++){
dp[i][]=dp[i-][]%MOD;
dp[i][]=dp[i-][]%MOD;
dp[i][]=(dp[i-][]+dp[i-][]+dp[i-][])%MOD*;
}
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--){
scanf("%I64d",&n);
printf("%I64d\n",(dp[n-][]+dp[n-][]+dp[n-][])%MOD);
}
return ;
}
hdu 5642 King's Order(数位dp)的更多相关文章
- HDU 5642 King's Order dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5642 King's Order Accepts: 381 Submissions: 1361 ...
- HDU 5642 King's Order【数位dp】
题目链接: http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=677&pid=1003 题意: 求长度为n的序列 ...
- HDU 5642 King's Order 动态规划
King's Order 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5642 Description After the king's speec ...
- hdu-5642 King's Order(数位dp)
题目链接: King's Order Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- HDU 4507 (鬼畜级别的数位DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4507 题目大意:求指定范围内与7不沾边的所有数的平方和.结果要mod 10^9+7(鬼畜の元凶) 解题 ...
- HDU 5787 K-wolf Number (数位DP)
K-wolf Number 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5787 Description Alice thinks an integ ...
- 【HDU 3652】 B-number (数位DP)
B-number Problem Description A wqb-number, or B-number for short, is a non-negative integer whose de ...
- HDU 5787 K-wolf Number(数位DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5787 [题目大意] 求区间[L,R]内十进制数相邻k位之间不相同的数字的个数. [题解] 很显然的 ...
- 2017"百度之星"程序设计大赛 - 复赛1005&&HDU 6148 Valley Numer【数位dp】
Valley Numer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
随机推荐
- Java基础 -- 冒泡排序算法(带详细注释)
冒泡排序的要点: 1.多轮排序,每轮排序中选出最大的元素放在最顶端,并且下次排序不再使用该元素; 2. 使用双for循环,外层for循环控制要排序的次数(轮数), 内层for循环控制当前要排序的元素并 ...
- [Javascript] Call Stack
Every time when a function run it will be push into the call stack and put on the top, you can thin ...
- wlan0 Interface doesn't support scanning : Device or resource busy
Problem: wlan0 Interface doesn't support scanning : Device or resource busy. Solved Way: sudo ifcong ...
- python进阶之路之文件处理
Python之文件处理 *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !imp ...
- JS传递参数时对中文进行编码和解码
var b ="啊,我要过去"; var a = encodeURI(b);//对中文编码 ...
- [C#][Database]C#通过ODBC以自定义端口连接数据库
数据库端的配置暂且不说,比较简单,新建用户并开启相应连接权限即可. 通过ODBC连接数据库,重点在于Connection String的书写,在此可以查到几乎所有类型的Data Server的Conn ...
- C# 将对象序列化为Json格式
public static string JsonSerializer<T>(T t) { DataContractJsonSerializer ser = new DataContrac ...
- Memory Analyzer Blog
引用:http://memoryanalyzer.blogspot.jp/2008/05/automated-heap-dump-analysis-finding.html Dienstag, 27. ...
- Objective-C文件和目录操作,IOS文件操作,NSFileManager使用文件操作
http://blog.csdn.net/swingpyzf/article/details/15185767
- Js 时间间隔计算(间隔天数)
function GetDateDiff(startDate,endDate) { var startTime = new Date(Date.parse(startDate.replac ...