Problem Description
After the king's speech , everyone is encouraged. But the war is not over. The king needs to give orders from time to time. But sometimes he can not speak things well. So in his order there are some ones like this: "Let the group-p-p three come to me". As you can see letter 'p' repeats for 3 times. Poor king!
Now , it is war time , because of the spies from enemies , sometimes it is pretty hard for the general to tell which orders come from the king. But fortunately the general know how the king speaks: the king never repeats a letter for more than 3 times continually .And only this kind of order is legal. For example , the order: "Let the group-p-p-p three come to me" can never come from the king. While the order:" Let the group-p three come to me" is a legal statement.
The general wants to know how many legal orders that has the length of n
To make it simple , only lower case English Letters can appear in king's order , and please output the answer modulo 1000000007
We regard two strings are the same if and only if each charactor is the same place of these two strings are the same.
 
Input
The first line contains a number T(T≤10)——The number of the testcases.
For each testcase, the first line and the only line contains a positive number n(n≤2000).
 
Output
For each testcase, print a single number as the answer.
 
Sample Input
2
2
4
 
Sample Output
676
456950
hint:
All the order that has length 2 are legal. So the answer is 26*26.

For the order that has length 4. The illegal order are : "aaaa" , "bbbb"…….."zzzz" 26 orders in total. So the answer for n == 4 is 26^4-26 = 456950

 
 

题意:一个长度为n的序列,并且序列中不能出现长度大于3的连续的相同的字符,求一共有多少个合法序列。

思路:用dp[i][j]表示以j结尾,长度为i的合法序列个数。我们考虑一下这个怎么转移。
       以j结尾的话就三种情况,一个j结尾,两个j结尾,三个j结尾。

       如果是三个j结尾的话我们可以确定下来,长度为i的后三位是j,倒数第4位不可以是j,所以就是∑dp[i-3][k](k!=j),

       同理考虑两个j结尾和一个j结尾,那么转移方程就是:dp[i][j] = ∑dp[i-1][k] + ∑dp[i-2][k] + ∑dp[i-3][k] 

AC代码:

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 2006
#define inf 1e12
ll n;
ll dp[N][];
void init(){
dp[][]=;
for(ll i=;i<;i++){
dp[i][]=dp[i-][]%MOD;
dp[i][]=dp[i-][]%MOD;
dp[i][]=(dp[i-][]+dp[i-][]+dp[i-][])%MOD*;
}
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--){
scanf("%I64d",&n);
printf("%I64d\n",(dp[n-][]+dp[n-][]+dp[n-][])%MOD);
}
return ;
}

hdu 5642 King's Order(数位dp)的更多相关文章

  1. HDU 5642 King's Order dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5642 King's Order  Accepts: 381  Submissions: 1361   ...

  2. HDU 5642 King's Order【数位dp】

    题目链接: http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=677&pid=1003 题意: 求长度为n的序列 ...

  3. HDU 5642 King's Order 动态规划

    King's Order 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5642 Description After the king's speec ...

  4. hdu-5642 King's Order(数位dp)

    题目链接: King's Order Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Othe ...

  5. HDU 4507 (鬼畜级别的数位DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4507 题目大意:求指定范围内与7不沾边的所有数的平方和.结果要mod 10^9+7(鬼畜の元凶) 解题 ...

  6. HDU 5787 K-wolf Number (数位DP)

    K-wolf Number 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5787 Description Alice thinks an integ ...

  7. 【HDU 3652】 B-number (数位DP)

    B-number Problem Description A wqb-number, or B-number for short, is a non-negative integer whose de ...

  8. HDU 5787 K-wolf Number(数位DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5787 [题目大意] 求区间[L,R]内十进制数相邻k位之间不相同的数字的个数. [题解] 很显然的 ...

  9. 2017"百度之星"程序设计大赛 - 复赛1005&&HDU 6148 Valley Numer【数位dp】

    Valley Numer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

随机推荐

  1. python3-day4(yield)

    1.yield 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一 ...

  2. Win32/MFC的基本概念

    一.MFC的基本概念 单文档.多文档和对话框框架的区别 MFC中的类继承图的基本框架 CView类与CDocument的关系 Onpaint()和Ondraw()的关系 hdc-cdc区别联系 RUN ...

  3. [Oracle] 使用触发器实现IP限制用户登录

    在Oracle里,不像MySQL那样方便,可以直接在用户上进行IP限制,Oracle要实现用户级别的IP限制,可以使用触发器来迂回实现,下面是一个触发器的例子: create or replace t ...

  4. Opencv 简单的图片显示

    #include <opencv\cv.h> #include <opencv\highgui.h> #include <opencv\cxcore.h> int ...

  5. linux 终止用户会话

    第一步使用 tty 命令 查看自己会话id:本例中会话id为1[root@localhost ~]# tty/dev/pts/1[root@localhost ~]# 第二步 使用 w 命令 查看当前 ...

  6. [CSAPP笔记][第八章异常控制流][呕心沥血千行笔记]

    异常控制流 控制转移 控制流 系统必须能对系统状态的变化做出反应,这些系统状态不是被内部程序变量捕获,也不一定和程序的执行相关. 现代系统通过使控制流 发生突变对这些情况做出反应.我们称这种突变为异常 ...

  7. Java的优先级

    序列号 符号 名称 结合性(与操作数) 目数 说明 1 . 点 从左到右 双目 ( ) 圆括号 从左到右 [ ] 方括号 从左到右 2 + 正号 从右到左 单目 - 负号 从右到左 单目 ++ 自增 ...

  8. 使用QTP打开应用程序的三种方法

    1. systemUtil.Run ‘SystemUtil对象的Run方法 SystemUtil.Run “http://192.168.11.82/XXX” 参数实例: File:“http://1 ...

  9. 找不到类型“IBatisService.boxManageService”,它在 ServiceHost 指令中提供为 Service 特性值,或在配置元素 system.serviceModel/serviceHostingEnvironment/serviceActivations 中提供。

    找不到类型“IBatisService.boxManageService”,它在 ServiceHost 指令中提供为 Service 特性值,或在配置元素 system.serviceModel/s ...

  10. iOS_SN_Socket - AsyncSocket

    转载文章,原地址:http://yimouleng.com/2015/02/04/Socket-AsyncSocket/ 一.前言 公司的项目用到了Socket编程,之前在学习的过程当中,用到的更多的 ...