首先来说,,这题我wrong了好几次,代码力太弱啊。。很多细节没考虑。。

题意:给定两个数 L R,1 <= L <= R <= 10^18 ;求L 到 R 间 与 7 无关的数的平方和

什么数与7 无关?

1 没有数字7

2 不是7的倍数

3 所有数字的和不是7的倍数

我们先来考虑一下  如果这题问的是: L 到 R 间 与7 无关的数有多少个?

这道题该怎么思考? 给一点提示  dp 方程可以写成三维的 num(i,j,k) 其中 i 代表数的位数 j 代表 这个数对7取模的余数 k 代表这个数所有数字和对7取模的值,至于num(i,j,k) 当让就是这种数的个数了, 方程的转化也很简单  从数末尾逐步填数字 l (0~9)的话 num(i+1,(j*10+l)%7,(k+l)%7)+=num(i,j,k);

接下来 我默认你知道 num[i][j][k] 该怎么求了 这个时候 再来考虑一下 L 到 R 间与7 无关的数的和 ? 这个时候不用考虑的太复杂,,因为首先,你在求num[i][j][k]的时候已经求出了所有的满足条件的数的所有可能,要求和,无非就是哪一位的那个数字有多少个。

如果我们的dp是逐步往数的末尾填数 ,这个时候可以这样写 sum(i,j,k)其中i,j,k和num的i,j,k一个意思,然后sum表示满足这种情况的数的和 方程的转换可以写为:同样从数末尾逐步填数字 l (0~9)-- num(i+1,(j*10+l)%7,(k+l)%7)+=sum(i,j,k)*10+num(i,j,k)*l;

再来考虑平方和就比较容易了,,我们知道如果前面的数是a 我们往后面塞一个数字l 那么我们要求的数的平方和是---(10*a+l)^2 也就是100*a*a+20*a*l+l*l

方程我就不写了,,然后接下来的思路都是和上面的类似

贴出渣渣的代码。。。

 #include<iostream>
#include<stdio.h>
#include<string.h>
#include <string>
#include <cmath>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include<stdlib.h>
#include <vector>
using namespace std;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#define ll __int64
#define CL(a,b) memset(a,b,sizeof(a))
#define MAXNODE 100010
ll MOD=; ll s,e; ll dp[][][];
ll wsu[][][];
ll num[][][];
ll val[];
void initval()
{
int i=;
val[]=;
val[]=;
for(i=;i<=;i++)
{
val[i]=val[i-]*;
}
} void initdp()
{
int i,j,k,l;
CL(dp,);
CL(num,);
CL(wsu,);
for(i=;i<;i++)
{
if(i==)continue;
dp[][i%][i%]+=i*i;
wsu[][i%][i%]+=i;
num[][i%][i%]++;
}
num[][][]=;
for(i=;i<;i++)
{
for(j=;j<;j++)
{
for(k=;k<;k++)
{
for(l=;l<;l++)
{
if(l==)continue;
num[i+][(j+l)%][(k*+l)%]+=num[i][j][k]%MOD;
num[i+][(j+l)%][(k*+l)%]%=MOD;
wsu[i+][(j+l)%][(k*+l)%]+=(wsu[i][j][k]*(ll)+(ll)l*(num[i][j][k]))%MOD;
wsu[i+][(j+l)%][(k*+l)%]%=MOD;
dp[i+][(j+l)%][(k*+l)%]+=(((ll)l*(ll)l*num[i][j][k])+dp[i][j][k]*+(ll)*(ll)l*wsu[i][j][k]*(ll))%MOD;
dp[i+][(j+l)%][(k*+l)%]%=MOD;
}
// printf("%d %d %d %I64d\n",i,j,k,dp[i][j][k]);
}
}
}
} ll pro(ll n)
{
if(n==)return ;
ll rem=;
ll nu[];
int w,i,j,k;
nu[]=;
ll tem=n,va;w=,rem=;
while(tem!=)
{
nu[w]=tem%;
tem/=;
w++;
}
va=;
int su=;
ll v=;
while(--w)
{
if(nu[w]==)
{
for(i=;i<w;i++)nu[i]=;
nu[w]=;
}
for(i=nu[w]-;i>=;i--)
{
if(i==)continue;
for(j=;j<;j++)
{
for(k=;k<;k++)
{
if((su+i+j)%==)continue;
if(((ll)v+(ll)i*val[w]+(ll)k)%==)continue;
ll pre=(va+(ll)i*(val[w]%MOD))%MOD;
pre%=MOD;
rem+=(((pre*pre)%MOD)*(num[w-][j][k]%MOD))%MOD;
rem%=MOD;
rem+=dp[w-][j][k]%MOD;;
rem%=MOD;
rem+=((((ll)*pre)%MOD)*wsu[w-][j][k]%MOD)%MOD;
rem%=MOD;
}
}
}
rem%=MOD;
va+=(nu[w]*(val[w]%MOD))%MOD;
va%=MOD;
v+=nu[w]*(val[w]%);
v%=;
su+=nu[w];
su%=;
}
if(v!=&&su!=)rem+=(va*va)%MOD;
return rem%MOD;
} int main()
{
int tt;
initval();
initdp();
scanf("%d",&tt);
while(tt--)
{
scanf("%I64d %I64d",&s,&e);
ll rs=pro(s-1LL);
ll re=pro(e);
ll rem=re-rs;
rem=rem%MOD;
if(rem<)rem+=MOD;
// printf("%I64d %I64d ",rs,re);
printf("%I64d\n",rem);
}
return ;
}

HDU 4507 有点复杂却不难的数位DP的更多相关文章

  1. 【HDU 5456】 Matches Puzzle Game (数位DP)

    Matches Puzzle Game Problem Description As an exciting puzzle game for kids and girlfriends, the Mat ...

  2. 【HDU 4352】 XHXJ's LIS (数位DP+状态压缩+LIS)

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. HDU - 4389 X mod f(x)(数位dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=4389 题意 为[A,B] 区间内的数能刚好被其位数和整除的数有多少个. 分析 典型的数位dp...比赛时想不出状 ...

  4. 【HDU】4352 XHXJ's LIS(数位dp+状压)

    题目 传送门:QWQ 分析 数位dp 状压一下现在的$ O(nlogn) $的$ LIS $的二分数组 数据小,所以更新时直接暴力不用二分了. 代码 #include <bits/stdc++. ...

  5. HDU 4389——X mod f(x)(数位DP)

    X mod f(x) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  6. hdu 3709 Balanced Number(平衡数)--数位dp

    Balanced Number Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) ...

  7. hdu 2089 记忆化搜索写法(数位dp)

    /* 记忆化搜索,第二维判断是否是6 */ #include<stdio.h> #include<string.h> #define N 9 int dp[N][2],digi ...

  8. hdu:2089 ( 数位dp入门+模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2089 数位dp的模板题,统计一个区间内不含62的数字个数和不含4的数字个数,直接拿数位dp的板子敲就行 ...

  9. 浅谈数位DP

    在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...

随机推荐

  1. NonUniqueObjectException 问题

    org.hibernate.NonUniqueObjectException: a different object with the same identifier value was alread ...

  2. destoon系统商城加淘宝客按钮方法

    destoon系统很多喜欢运营B2B的站长都在用,其中的商城模块常常被用来做淘宝客,其中的难点是如何把购买按钮做成淘宝客地址,这个问题的修改在论坛上被叫价50元,下面小编把这个实用的方法分享下,希望对 ...

  3. 基于htmlparser实现网页内容解析

    基于htmlparser实现网页内容解析 网页解析,即程序自动分析网页内容.获取信息,从而进一步处理信息. 网页解析是实现网络爬虫中不可缺少而且十分重要的一环,由于本人经验也很有限,我仅就我们团队开发 ...

  4. ISO7816标准IO通讯方面的需求

    以下需求适用于符合ISO7816的Reader的测试:换句话说只要Reader能通过以下指令,就基本符合了ISO7816标准,具体需求为: 1 概述 本文档主要描述CDCAS系统中用到的CA证书的格式 ...

  5. Cmake编译成静态库

    To build OpenCV as static library you need to set BUILD_SHARED_LIBS flag to false/off: cmake -DBUILD ...

  6. Linux cat和EOF的使用

    在某些场合,可能我们需要在脚本中生成一个临时文件,然后把该文件作为最终文件放入目录中.(可参考ntop.spec文件)这样有几个好处,其中之一就是临时文件不是唯一的,可以通过变量赋值,也可根据不同的判 ...

  7. 【hihoCoder第十五周】最近公共祖先·二

    老实说我没有读题,看见标题直接就写了,毕竟hiho上面都是裸的算法演练. 大概看了下输入输出,套着bin神的模板,做了个正反map映射,但是怎么都得不了满分.等这周结束后,找高人询问下trick. 若 ...

  8. RequireJS入门(一)

    RequireJS由James Burke创建,他也是AMD规范的创始人. RequireJS会让你以不同于往常的方式去写JavaScript.你将不再使用script标签在HTML中引入JS文件,以 ...

  9. 关于Spring中的PagedListHolder分页类的分析

    PagedListHolder 这个类可以 对分页操作进行封装 文件在:import org.springframework.beans.support.PagedListHolder;下 默认是把查 ...

  10. Html中版权符号的字体选择问题(如何让版权符号更美观)

    一.发现问题 ©是html的中版权的符号,但是字体选择的不对会带来一些问题.如果是宋体,这个符号显示的就是很奇怪的一个符号. 二.解决问题 复制代码 代码如下: <span style=&quo ...