题目大意:给你N和K,问有多少个数对满足gcd(N-A,N)*gcd(N-B,N)=N^K。
题解:由于 gcd(a, N) <= N,于是 K>2 都是无解,K=2 只有一个解 A=B=N,只要考虑K=1的情况就好了其实上式和这个是等价的gcd(A,N)*gcd(B,N)=N^K,我们枚举gcd(A,N)=g,那么gcd(B,N)=N/g。问题转化为统计满足 gcd(A, N)=g的A的个数。这个答案就是 ɸ(N/g),只要枚举 N 的 约数就可以了。答案是 Σɸ(N/g)*ɸ(g)(g|N)。
#include <cstdio>
typedef long long LL;
const int MOD=1000000007;
LL Eular(LL n){
LL ret=1;
for(LL i=2;i*i<=n;i++){
if(n%i==0){
n/=i,ret*=i-1;
while(n%i==0)n/=i,ret*=i;
}
}if(n>1)ret*=(n-1);
return ret;
}
int main(){
int n,k;
while(~scanf("%d%d",&n,&k)){
if(n==1||k==2){puts("1");continue;}
if(k>2){puts("0");continue;}
LL ans=0;
for(LL i=1;i*i<=n;i++)if(n%i==0){
LL t=Eular(i)*Eular(n/i)%MOD;
(ans+=t)%=MOD;
if(i*i!=n)(ans+=t)%=MOD;
}printf("%d\n",(int)ans);
}return 0;
}

HDU 4983 Goffi and GCD的更多相关文章

  1. hdu 4983 Goffi and GCD(数论)

    题目链接:hdu 4983 Goffi and GCD 题目大意:求有多少对元组满足题目中的公式. 解题思路: n = 1或者k=2时:答案为1 k > 2时:答案为0(n≠1) k = 1时: ...

  2. HDU 4983 Goffi and GCD(数论)

    HDU 4983 Goffi and GCD 思路:数论题.假设k为2和n为1.那么仅仅可能1种.其它的k > 2就是0种,那么事实上仅仅要考虑k = 1的情况了.k = 1的时候,枚举n的因子 ...

  3. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  4. 【HDOJ】4983 Goffi and GCD

    题意说的非常清楚,即求满足gcd(n-a, n)*gcd(n-b, n) = n^k的(a, b)的不同对数.显然gcd(n-a, n)<=n, gcd(n-b, n)<=n.因此当n不为 ...

  5. HDU 4981 Goffi and Median(水)

    HDU 4981 Goffi and Median 思路:排序就能够得到中间数.然后总和和中间数*n比較一下就可以 代码: #include <cstdio> #include <c ...

  6. HDU 4982 Goffi and Squary Partition(推理)

    HDU 4982 Goffi and Squary Partition 思路:直接从全然平方数往下找,然后推断是否能构造出该全然平方数,假设能够就是yes,假设都不行就是no.注意构造时候的推断,因为 ...

  7. hdu 5869 区间不同GCD个数(树状数组)

    Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  8. hdu 5656 CA Loves GCD(n个任选k个的最大公约数和)

    CA Loves GCD  Accepts: 64  Submissions: 535  Time Limit: 6000/3000 MS (Java/Others)  Memory Limit: 2 ...

  9. hdu 4983 欧拉函数

    http://acm.hdu.edu.cn/showproblem.php?pid=4983 求有多少对元组满足题目中的公式. 对于K=1的情况,等价于gcd(A, N) * gcd(B, N) = ...

随机推荐

  1. Linux学习之wget命令

    Linux系统中的wget是一个下载文件的工具,它用在命令行下.对于Linux用户是必不可少的工具,我们经常要下载一些软件或从远程服务器恢复备份到本地服务器.wget支持HTTP,HTTPS和FTP协 ...

  2. hdu 5637 Transform 最短路

    题目链接 异或的性质. 求s到t的最少步骤, 等价于求0到s^t的最少步骤. 通过最少的步骤达到s^t的状态, 等价于求0到s^t的最短路. 先将最短路求出来然后O(1)查询. #include &l ...

  3. hdu 1695 GCD 容斥+欧拉函数

    题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...

  4. ListView的简单使用和性能优化

    起源:ListView是Android开发中使用最广泛的一种控件,它以垂直列表的形式显示所有列表项. 创建ListView有两种方式: ☆ 直接使用ListView进行创建. ☆让Activity继承 ...

  5. oc swift 混编 特技

    1.swift 工程新建oc文件,新建的时候提示是否桥接文件,点击yes,把swift要用的oc文件的头文件 都导入桥接文件中就OK了. 2.在swift工程中oc调用 swift文件,需要在导入名字 ...

  6. J2SE知识点摘记(十三)

    1.        字节流 InputStream(输入字节流)是一个定义了java流式字节流输入模式的抽象类.该类的所有方法在出错时都会引发一个IOExcepiton异常. Void close() ...

  7. CF卡是什么

    CF卡(Compact Flash)最初是一种用于便携式电子设备的数据存储设备.作为一种存储设备,它革命性的使用了闪存,于1994年首次由SanDisk公司生产并制定了相关规范.当前,它的物理格式已经 ...

  8. android样式布局---&gt;ListView(附上源代码)

    在android应用开发过程中,Listview 是经常使用的数据展现控件,往往用于显示列表形式的数据. 假设只显示数据往往会显得非常单调.非常多时候依据须要定义不同的item 背景选项.比如定义数据 ...

  9. hdu3038 How Many Answers Are Wrong【基础种类并查集】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4298091.html   ---by 墨染之樱花 题目链接:http://acm.hdu.ed ...

  10. PLSQLDeveloper过期要注册表

    打开运行输入 regedit 打表注册表 删除 HKEY_CURRENT_USER\Software\Allround Automations HKEY_CURRENT_USER\Software\M ...