POJ 1142 Smith Numbers(史密斯数)
|
Description |
题目描述 |
|
While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University, noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way: 4937775= 3*5*5*65837 The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers. As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition. Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036.However, Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775! |
阿尔伯特·威兰斯基是一位理海大学的数学家,在1982年浏览他自己的电话薄时,注意到他的表兄弟(Harold Smith)H. Smith的电话号码有有如下特点:各位上的数字相加等于分解质因数后各位上的数字相加。懂否?史密斯的电话号码是493-7775。这个数字可被分解质因数致如下形式: 4937775= 3*5*5*65837 这个电话号码各位数字的和是4+9+3+7+7+7+5= 42,并且与分解质因数后各位数字的和相等3+5+5+6+5+8+3+7=42。威兰斯基感觉很神奇就以他的表兄弟命名:史密斯数。 不过这个性质对每个质数都成立,因此威兰斯基后来把质数(分解不能)从史密斯数的定义中剔除了。 威兰斯基在the Two Year College Mathematics Journal发表了关于史密斯数的论文并且列出了一整套史密斯数:举个栗子,9985是史密斯数,6036也是。但是威兰斯基没能找到比他表兄弟电话号码4937775更大的史密斯数,你可以当条红领巾! |
|
Input |
输入 |
|
The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0. |
输入文件由一列正整数组成,每行一个整数。每个整数最多8位。数字0表示输入结束。 |
|
Output |
输出 |
|
For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n, and print it on a line by itself. You can assume that such a number exists. |
对于每个n>0的输入,你要算出大于n的最小史密斯数,输出一行。你可以认为结果是存在的。 |
|
Sample Input - 输入样例 |
Sample Output - 输出样例 |
|
4937774 0 |
4937775 |
【题解】
首先,这道题是水题,不然就会和某个人一样觉得要用Pollard's rho算法……
注意几点就可以了:
①可以暴力。②素数不是史密斯数。③从n+1开始找。
④题目描述和输入输出分开看,并不是要你找4937775后的史密斯数。
【代码 C++】
#include<cstdio>
#include<cstring>
#include<cmath>
int prime[];
void rdy(){
bool temp[];
memset(temp, , sizeof(temp));
prime[] = ;
int i = , j, pi = ;
for (i = ; i < ; i += ){
if (temp[i]) continue;
else{
for (j = i << ; j < ; j += i) temp[j] = ;
prime[++pi] = i;
}
}
prime[] = ;
}
int digitSum(int now){
int sum = ;
while (now) sum += now % , now /= ;
return sum;
}
int find(int now){
int i = , ed = sqrtf(now) + 0.5;
if (ed > ) ed = ;
for (; prime[i] <= ed; ++i){
if (now%prime[i] == ) return prime[i];
}
return ;
}
int change(int now){
int sum = , temp, stp = ;
while (now > ){
temp = find(now);
if (temp) sum += digitSum(temp), now /= temp, ++stp;
else sum += digitSum(now), now = ;
}
if (stp) return sum;
return ;
}
int main(){
rdy();
int n;
while (scanf("%d", &n)){
if (n++){
while (digitSum(n) != change(n)) ++n;
printf("%d\n", n);
}
else break;
}
return ;
}
POJ 1142
POJ 1142 Smith Numbers(史密斯数)的更多相关文章
- poj 1142 Smith Numbers
Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...
- POJ 1142 Smith Numbers(分治法+质因数分解)
http://poj.org/problem?id=1142 题意: 给出一个数n,求大于n的最小数,它满足各位数相加等于该数分解质因数的各位相加. 思路:直接暴力. #include <ios ...
- Smith Numbers POJ - 1142 (暴力+分治)
题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...
- POJ 1142:Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- Poj 2247 Humble Numbers(求只能被2,3,5, 7 整除的数)
一.题目大意 本题要求写出前5482个仅能被2,3,5, 7 整除的数. 二.题解 这道题从本质上和Poj 1338 Ugly Numbers(数学推导)是一样的原理,只需要在原来的基础上加上7的运算 ...
- A - Smith Numbers POJ
While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...
- Smith Numbers - PC110706
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...
- UVA 10042 Smith Numbers(数论)
Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...
- 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP
[BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...
随机推荐
- 视频处理控件TVideoGrabber中如何混合多个视频源(1)
其实一个或是几个作为普通的视频源使用的TVideoGrabber组件,可以进行混合来作为一个TVideoGrabber组件使用,这些普通的组件可以是视频捕捉设备或是视频剪辑等.同时这个混合的组件独立于 ...
- 分享总结:更好地CodeReview
代码质量分享 2016_06_24_舒琴_代码质量.key For 代码提交人 基本原则 Review时机: 对于普通bugfix或优化,CodeReview最迟要 ...
- linux设备驱动归纳总结(二):模块的相关基础概念【转】
本文转载自:http://blog.chinaunix.net/uid-25014876-id-59415.html linux设备驱动归纳总结(二):模块的相关基础概念 系统平台:Ubuntu 10 ...
- remote desktop connect btw Mac, Windows, Linux(Ubuntu) Mac,Windows,Linux之间的远程桌面连接
目录 I. 预备 II. Mac连接Windows III. Windows连接Mac IV. Windows连接Ubuntu V. Mac连接Ubuntu VI. Ubuntu连接Mac VII, ...
- https笔记
TCP提供了可靠的,面向连接的字节流服务. 1)应用数据分割成TCP认为适合发送的数据块,通过MSS(最大数据包长度)来控制. 2)重传机制 3)对首部和数据进行校验 4)TCP对收到的数据进行排序, ...
- html5 canvas 笔记四(变形 Transformations)
绘制复杂图形必不可少的方法 save() 保存 canvas 状态 restore() 恢复 canvas 状态 Canvas 的状态就是当前画面应用的所有样式和变形的一个快照. Canvas 的状态 ...
- nodepad + 插件
Notepad++是一款Windows环 境下免费开源的代码编辑器,支持的语言: C, C++ , Java , C#, XML,SQL,Ada, HTML, PHP, ASP, AutoIt, 汇编 ...
- 20145227 《Java程序设计》第3周学习总结
20145227 <Java程序设计>第3周学习总结 教材学习内容总结 第四章 认识对象 4.1 类与对象 1.定义类:生活中描述事物无非就是描述事物的属性和行为.如:人有身高,体重等属性 ...
- Tomcat优化总结
一.内存溢出问题 Linux设置启动脚本 [root@LAMP ~]# vi /usr/local/tomcat/bin/catalina.sh #__________________________ ...
- 安装Docker和下载images镜像和常用Docker命令
我的是centos7,也会6的方法: $sudo yum install docker 直接yum安装contos7使用centos6.5先获取epel源并 启动Docker,并注册开机服务 [roo ...