POJ 1142 Smith Numbers(史密斯数)
Description |
题目描述 |
While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University, noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way: 4937775= 3*5*5*65837 The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers. As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition. Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036.However, Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775! |
阿尔伯特·威兰斯基是一位理海大学的数学家,在1982年浏览他自己的电话薄时,注意到他的表兄弟(Harold Smith)H. Smith的电话号码有有如下特点:各位上的数字相加等于分解质因数后各位上的数字相加。懂否?史密斯的电话号码是493-7775。这个数字可被分解质因数致如下形式: 4937775= 3*5*5*65837 这个电话号码各位数字的和是4+9+3+7+7+7+5= 42,并且与分解质因数后各位数字的和相等3+5+5+6+5+8+3+7=42。威兰斯基感觉很神奇就以他的表兄弟命名:史密斯数。 不过这个性质对每个质数都成立,因此威兰斯基后来把质数(分解不能)从史密斯数的定义中剔除了。 威兰斯基在the Two Year College Mathematics Journal发表了关于史密斯数的论文并且列出了一整套史密斯数:举个栗子,9985是史密斯数,6036也是。但是威兰斯基没能找到比他表兄弟电话号码4937775更大的史密斯数,你可以当条红领巾! |
Input |
输入 |
The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0. |
输入文件由一列正整数组成,每行一个整数。每个整数最多8位。数字0表示输入结束。 |
Output |
输出 |
For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n, and print it on a line by itself. You can assume that such a number exists. |
对于每个n>0的输入,你要算出大于n的最小史密斯数,输出一行。你可以认为结果是存在的。 |
Sample Input - 输入样例 |
Sample Output - 输出样例 |
4937774 0 |
4937775 |
【题解】
首先,这道题是水题,不然就会和某个人一样觉得要用Pollard's rho算法……
注意几点就可以了:
①可以暴力。②素数不是史密斯数。③从n+1开始找。
④题目描述和输入输出分开看,并不是要你找4937775后的史密斯数。
【代码 C++】
#include<cstdio>
#include<cstring>
#include<cmath>
int prime[];
void rdy(){
bool temp[];
memset(temp, , sizeof(temp));
prime[] = ;
int i = , j, pi = ;
for (i = ; i < ; i += ){
if (temp[i]) continue;
else{
for (j = i << ; j < ; j += i) temp[j] = ;
prime[++pi] = i;
}
}
prime[] = ;
}
int digitSum(int now){
int sum = ;
while (now) sum += now % , now /= ;
return sum;
}
int find(int now){
int i = , ed = sqrtf(now) + 0.5;
if (ed > ) ed = ;
for (; prime[i] <= ed; ++i){
if (now%prime[i] == ) return prime[i];
}
return ;
}
int change(int now){
int sum = , temp, stp = ;
while (now > ){
temp = find(now);
if (temp) sum += digitSum(temp), now /= temp, ++stp;
else sum += digitSum(now), now = ;
}
if (stp) return sum;
return ;
}
int main(){
rdy();
int n;
while (scanf("%d", &n)){
if (n++){
while (digitSum(n) != change(n)) ++n;
printf("%d\n", n);
}
else break;
}
return ;
}
POJ 1142
POJ 1142 Smith Numbers(史密斯数)的更多相关文章
- poj 1142 Smith Numbers
Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...
- POJ 1142 Smith Numbers(分治法+质因数分解)
http://poj.org/problem?id=1142 题意: 给出一个数n,求大于n的最小数,它满足各位数相加等于该数分解质因数的各位相加. 思路:直接暴力. #include <ios ...
- Smith Numbers POJ - 1142 (暴力+分治)
题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...
- POJ 1142:Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- Poj 2247 Humble Numbers(求只能被2,3,5, 7 整除的数)
一.题目大意 本题要求写出前5482个仅能被2,3,5, 7 整除的数. 二.题解 这道题从本质上和Poj 1338 Ugly Numbers(数学推导)是一样的原理,只需要在原来的基础上加上7的运算 ...
- A - Smith Numbers POJ
While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...
- Smith Numbers - PC110706
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...
- UVA 10042 Smith Numbers(数论)
Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...
- 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP
[BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...
随机推荐
- ImagXpress中如何修改Alpha通道方法汇总
ImagXpress支持处理Alpha通道信息来管理图像的透明度,Alpha通道支持PNG ,TARGA和TIFF文件,同时还支持BMP和ICO文件.如果说保存的图像样式不支持Alpha通道,就将会丢 ...
- windows prompt personalize 设置cmd提示的相关
由于有一篇随笔种我说要引用这篇文章,所以不得已也出来了,就像你说大话『我明天去吃屎』,结果你做到了. 我这记录一下有关windows prompt这是的变量,我不知道这算不算变量,因为windows变 ...
- <mvc:annotation-driven />与<context:annotation-config />
Spring家族的配置中这两个配置的意义,说具体点其实根据标签的shecma就能看出来,mvc,主要就是为了Spring MVC来用的,提供Controller请求转发,json自动转换等功能,而co ...
- oracle 日期问题
共三部分: 第一部分:oracle sql日期比较: http://www.cnblogs.com/sopost/archive/2011/12/03/2275078.html 第二部分:Oracle ...
- iOS开发 爱特开发技术bug总结
#pragma mark 每天总结学习两小时 效率 和 每天学习 研究底层 多进去看看 // .................................................... ...
- SVN上传文件注意事项-------------------养成良好的项目文件上传习惯
项目组的学弟经常把一些.obj文件和debug目录上传到svn,这个习惯很不好,我说了很多次他总改不了,还是写个文档说清楚吧,以后查起来也方便. svn是一种版本控制工具,主要目的是用来管理代 ...
- iOS学习之Table View的简单使用
Table View简单描述: 在iPhone和其他iOS的很多程序中都会看到Table View的出现,除了一般的表格资料展示之外,设置的属性资料往往也用到Table View,Table View ...
- hdwiki中model模块的应用
control中调用model原则是这样的,如果你的这个model在本control中大部分方法中都要用到,那么,就写在构造函数里面.例如,名字为doc的control的构造函数如下: functio ...
- JAVA导出数据到excel中大数据量的解决方法
最近在做项目功能时 ,发现有20万以上的数据.要求导出时直接导出成压缩包.原来的逻辑是使用poi导出到excel,他是操作对象集合然后将结果写到excel中. 使用poi等导出时,没有考虑数据量的问题 ...
- Kernel启动时 驱动是如何加载的module_init,加载的次序如何;略见本文
Init.h中有相关initcall的启动次序,在system.map中可看出具体的__initcall指针的前后次序 #define pure_initcall(fn) __define_initc ...