Description

题目描述

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University, noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

4937775= 3*5*5*65837

The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition.

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036.However, Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

阿尔伯特·威兰斯基是一位理海大学的数学家,在1982年浏览他自己的电话薄时,注意到他的表兄弟(Harold Smith)H. Smith的电话号码有有如下特点:各位上的数字相加等于分解质因数后各位上的数字相加。懂否?史密斯的电话号码是493-7775。这个数字可被分解质因数致如下形式:

4937775= 3*5*5*65837

这个电话号码各位数字的和是4+9+3+7+7+7+5= 42,并且与分解质因数后各位数字的和相等3+5+5+6+5+8+3+7=42。威兰斯基感觉很神奇就以他的表兄弟命名:史密斯数。

不过这个性质对每个质数都成立,因此威兰斯基后来把质数(分解不能)从史密斯数的定义中剔除了。

威兰斯基在the Two Year College Mathematics Journal发表了关于史密斯数的论文并且列出了一整套史密斯数:举个栗子,9985是史密斯数,6036也是。但是威兰斯基没能找到比他表兄弟电话号码4937775更大的史密斯数,你可以当条红领巾!

Input

输入

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.

输入文件由一列正整数组成,每行一个整数。每个整数最多8位。数字0表示输入结束。

Output

输出

For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n, and print it on a line by itself. You can assume that such a number exists.

对于每个n>0的输入,你要算出大于n的最小史密斯数,输出一行。你可以认为结果是存在的。

Sample Input - 输入样例

Sample Output - 输出样例

4937774

0

4937775

【题解】

  首先,这道题是水题,不然就会和某个人一样觉得要用Pollard's rho算法……

  注意几点就可以了:

  ①可以暴力。②素数不是史密斯数。③从n+1开始找。

  ④题目描述和输入输出分开看,并不是要你找4937775后的史密斯数。

【代码 C++】

 #include<cstdio>
#include<cstring>
#include<cmath>
int prime[];
void rdy(){
bool temp[];
memset(temp, , sizeof(temp));
prime[] = ;
int i = , j, pi = ;
for (i = ; i < ; i += ){
if (temp[i]) continue;
else{
for (j = i << ; j < ; j += i) temp[j] = ;
prime[++pi] = i;
}
}
prime[] = ;
}
int digitSum(int now){
int sum = ;
while (now) sum += now % , now /= ;
return sum;
}
int find(int now){
int i = , ed = sqrtf(now) + 0.5;
if (ed > ) ed = ;
for (; prime[i] <= ed; ++i){
if (now%prime[i] == ) return prime[i];
}
return ;
}
int change(int now){
int sum = , temp, stp = ;
while (now > ){
temp = find(now);
if (temp) sum += digitSum(temp), now /= temp, ++stp;
else sum += digitSum(now), now = ;
}
if (stp) return sum;
return ;
}
int main(){
rdy();
int n;
while (scanf("%d", &n)){
if (n++){
while (digitSum(n) != change(n)) ++n;
printf("%d\n", n);
}
else break;
}
return ;
}

POJ 1142

POJ 1142 Smith Numbers(史密斯数)的更多相关文章

  1. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  2. POJ 1142 Smith Numbers(分治法+质因数分解)

    http://poj.org/problem?id=1142 题意: 给出一个数n,求大于n的最小数,它满足各位数相加等于该数分解质因数的各位相加. 思路:直接暴力. #include <ios ...

  3. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  4. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  5. Poj 2247 Humble Numbers(求只能被2,3,5, 7 整除的数)

    一.题目大意 本题要求写出前5482个仅能被2,3,5, 7 整除的数. 二.题解 这道题从本质上和Poj 1338 Ugly Numbers(数学推导)是一样的原理,只需要在原来的基础上加上7的运算 ...

  6. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

  7. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  8. UVA 10042 Smith Numbers(数论)

    Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...

  9. 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP

    [BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...

随机推荐

  1. 视频处理控件TVideoGrabber中如何混合多个视频源(1)

    其实一个或是几个作为普通的视频源使用的TVideoGrabber组件,可以进行混合来作为一个TVideoGrabber组件使用,这些普通的组件可以是视频捕捉设备或是视频剪辑等.同时这个混合的组件独立于 ...

  2. 分享总结:更好地CodeReview

            代码质量分享    2016_06_24_舒琴_代码质量.key    For 代码提交人     基本原则 Review时机: 对于普通bugfix或优化,CodeReview最迟要 ...

  3. linux设备驱动归纳总结(二):模块的相关基础概念【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-59415.html linux设备驱动归纳总结(二):模块的相关基础概念 系统平台:Ubuntu 10 ...

  4. remote desktop connect btw Mac, Windows, Linux(Ubuntu) Mac,Windows,Linux之间的远程桌面连接

    目录 I. 预备 II. Mac连接Windows III. Windows连接Mac IV. Windows连接Ubuntu V. Mac连接Ubuntu VI. Ubuntu连接Mac VII, ...

  5. https笔记

    TCP提供了可靠的,面向连接的字节流服务. 1)应用数据分割成TCP认为适合发送的数据块,通过MSS(最大数据包长度)来控制. 2)重传机制 3)对首部和数据进行校验 4)TCP对收到的数据进行排序, ...

  6. html5 canvas 笔记四(变形 Transformations)

    绘制复杂图形必不可少的方法 save() 保存 canvas 状态 restore() 恢复 canvas 状态 Canvas 的状态就是当前画面应用的所有样式和变形的一个快照. Canvas 的状态 ...

  7. nodepad + 插件

    Notepad++是一款Windows环 境下免费开源的代码编辑器,支持的语言: C, C++ , Java , C#, XML,SQL,Ada, HTML, PHP, ASP, AutoIt, 汇编 ...

  8. 20145227 《Java程序设计》第3周学习总结

    20145227 <Java程序设计>第3周学习总结 教材学习内容总结 第四章 认识对象 4.1 类与对象 1.定义类:生活中描述事物无非就是描述事物的属性和行为.如:人有身高,体重等属性 ...

  9. Tomcat优化总结

    一.内存溢出问题 Linux设置启动脚本 [root@LAMP ~]# vi /usr/local/tomcat/bin/catalina.sh #__________________________ ...

  10. 安装Docker和下载images镜像和常用Docker命令

    我的是centos7,也会6的方法: $sudo yum install docker 直接yum安装contos7使用centos6.5先获取epel源并 启动Docker,并注册开机服务 [roo ...