Cable TV Network
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 4678   Accepted: 2163

Description

The interconnection of the relays in a cable TV network is bi-directional. The network is connected if there is at least one interconnection path between each pair of relays present in the network. Otherwise the network is disconnected. An empty network or a network with a single relay is considered connected. The safety factor f of a network with n relays is:
1. n, if the net remains connected regardless the number of relays removed from the net.

2. The minimal number of relays that disconnect the network when removed.



For example, consider the nets from figure 1, where the circles mark
the relays and the solid lines correspond to interconnection cables.
The network (a) is connected regardless the number of relays that are
removed and, according to rule (1), f=n=3. The network (b) is
disconnected when 0 relays are removed, hence f=0 by rule (2). The
network (c) is disconnected when the relays 1 and 2 or 1 and 3 are
removed. The safety factor is 2.

Input

Write
a program that reads several data sets from the standard input and
computes the safety factor for the cable networks encoded by the data
sets. Each data set starts with two integers: 0<=n<=50,the number
of relays in the net, and m, the number of cables in the net. Follow m
data pairs (u,v), u < v, where u and v are relay identifiers
(integers in the range 0..n-1). The pair (u,v) designates the cable that
interconnects the relays u and v. The pairs may occur in any
order.Except the (u,v) pairs, which do not contain white spaces, white
spaces can occur freely in input. Input data terminate with an end of
file and are correct.

Output

For
each data set, the program prints on the standard output, from the
beginning of a line, the safety factor of the encoded net.

Sample Input

0 0
1 0
3 3 (0,1) (0,2) (1,2)
2 0
5 7 (0,1) (0,2) (1,3) (1,2) (1,4) (2,3) (3,4)

Sample Output

0
1
3
0
2
【分析】

图的连通度分为点连通度和边连通度:

(1)点连通度:只许删点,求至少要删掉几个点(当然,s和t不能删去,这里保证原图中至少有三个点);

(2)边连通度:只许删边,求至少要删掉几条边。

并且,有向图和无向图的连通度求法不同,因此还要分开考虑(对于混合图,只需将其中所有的无向边按照
无向图的办法处理、有向边按照有向图的办法处理即可)。

【1】有向图的边连通度:
这个其实就是最小割问题。以s为源点,t为汇点建立网络,原图中的每条边在网络中仍存在,容量为1,求该网络的最小割(也就是最大流)的值即为原图的边连通度。
【2】有向图的点连通度:
需要拆点。建立一个网络,原图中的每个点i在网络中拆成i'与i'',有一条边<i',
i''>,容量为1 (<s', s''>和<t', t''>例外,容量为正无穷)。原图中的每条边<i,
j>在网络中为边<i'', j'>, 
容量为正无穷。以s'为源点、t''为汇点求最大流,最大流的值即为原图的点连通度。 
说明:最大流对应的是最小割。显然,容量为正无穷的边不可能通过最小割,也就是原图中的边和s、t两个点不能删去;若边<i, i''>通过最小割,则表示将原图中的点i删去。
【3】无向图的边连通度:
将图中的每条边(i, j)拆成<i, j>和<j, i>两条边,再按照有向图的办法(【1】)处理;
【4】无向图的点连通度:
将图中的每条边(i, j)拆成<i, j>和<j, i>两条边,再按照有向图的办法(【2】)处理。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <queue>
#include <vector>
#define inf 0x7fffffff
#define met(a,b) memset(a,b,sizeof a)
typedef long long ll;
using namespace std;
const int N = ;
const int M = ;
int n,m,cnt=;
int toto;
struct man
{
int u,v;
}mp[N*N];
struct Dinic {
int s,t;
struct Edge {
int nxt,to,cap,flow;
} edg[M];
bool vv[N];
bool vis[N];
int d[N];
int h[N];
int cur[N];
void init() {
met(h,-);toto=;
}
void AddEdge(int x,int y,int z) {
edg[toto].to=y;
edg[toto].nxt=h[x];
edg[toto].cap=z;edg[toto].flow=;
h[x]=toto++;
edg[toto].to=x;edg[toto].flow=;
edg[toto].nxt=h[y];
h[y]=toto++;
}
bool BFS() {
memset(vis,,sizeof(vis));met(d,-);
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = h[x]; i!=-; i=edg[i].nxt) {
int v=edg[i].to;
if (!vis[v] && edg[i].cap > edg[i].flow) {
vis[v]=;
d[v] = d[x]+;
q.push(v);
}
}
}
return vis[t];
} int DFS(int x,int a) {
if (x==t || a==)
return a;
int flow = ,f;
for(int &i=cur[x]; i!=-; i=edg[i].nxt) {
int v=edg[i].to;
if (d[x]+ == d[v] && (f=DFS(v,min(a,edg[i].cap-edg[i].flow)))>) {
edg[i].flow+=f;
edg[i^].flow-=f;
flow+=f;
a-=f;
if (a==)
break;
}
}
return flow;
} int Maxflow(int s,int t) {
this->s=s;
this->t=t;
int flow = ;
while (BFS()) {
for(int i=; i<=*n; i++)cur[i]=h[i];
flow+=DFS(s,inf);
}
return flow;
}
} dc;
void Build()
{
dc.init();
for(int i=;i<n;i++)dc.AddEdge(i,i+n,);
for(int i=;i<m;i++){
dc.AddEdge(mp[i].u+n,mp[i].v,inf);
dc.AddEdge(mp[i].v+n,mp[i].u,inf);
}
}
int main() {
int u,v;
while(~scanf("%d%d",&n,&m)){
met(mp,);int ans=inf;int pp[N][N];
met(pp,);
for(int i=;i<m;i++){
scanf(" (%d,%d)",&u,&v);
mp[i].u=u;mp[i].v=v;pp[u][v]=pp[v][u]=;
}
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
Build();
if(!pp[i][j]){ans=min(ans,dc.Maxflow(i+n,j));if(ans==)break;}
}
if(ans==)break;
}
if(abs(ans)>=n)ans=n;
printf("%d\n",ans);
}
return ;
}

POJ 1966 Cable TV Network(顶点连通度的求解)的更多相关文章

  1. poj 1966 Cable TV Network 顶点连通度

    题目链接 给一个图, n个点m条边, 求至少去掉多少个点可以使得图不再联通.随便指定一个点为源点, 枚举其他点为汇点的情况, 跑网络流, 求其中最小的情况. 如果最后ans为inf, 说明是一个完全图 ...

  2. Cable TV Network 顶点连通度 (最大流算法)

    Cable TV Network 题目抽象:给出含有n个点顶点的无向图,给出m条边.求定点联通度   K 算法:将每个顶点v拆成 v'   v''  ,v'-->v''的容量为1.       ...

  3. POJ 1966 Cable TV Network

    Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4702   Accepted: 2173 ...

  4. POJ 1966 Cable TV NETWORK(网络流-最小点割集)

                                    Cable TV NETWORK The interconnection of the relays in a cable TV net ...

  5. POJ 1966 Cable TV Network (点连通度)【最小割】

    <题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见   >>> 本题是求点连通度, ...

  6. POJ 1966 Cable TV Network (无向图点连通度)

    [题意]给出一个由n个点,m条边组成的无向图.求最少去掉多少点才能使得图中存在两点,它们之间不连通. [思路]回想一下s->t的最小点割,就是去掉多少个点能使得s.t不连通.那么求点连通度就枚举 ...

  7. POJ 1966 Cable TV Network (算竞进阶习题)

    拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...

  8. POJ 1966 Cable TV Network 【经典最小割问题】

    Description n个点的无向图,问最少删掉几个点,使得图不连通 n<=50 m也许可以到完全图? Solution 最少,割点,不连通,可以想到最小割. 发现,图不连通,必然存在两个点不 ...

  9. POJ - 1966 Cable TV Network (最大流求点连通度)

    题意:求一个无向图的点连通度.点联通度是指,一张图最少删掉几个点使该图不连通:若本身是非连通图,则点连通度为0. 分析:无向图的点连通度可以转化为最大流解决.方法是:1.任意选择一个点作为源点:2.枚 ...

随机推荐

  1. Win7 Print Spooler服務自动关闭

    对于Win7系统而言,该问题通常是安装了错误的打印驱动引起的,Win7系统为了保护其它进程不受干扰,自动关闭了打印服务. 解决方法就是: a> 把不用的打印机删掉. b> 确保你安装了正确 ...

  2. my class 2.0

    www.dropbox.com www.google.com/voice www.prezi.com www.evernote.com

  3. android shape详解

    shape--> shape属性: rectangle: 矩形,默认的形状,可以画出直角矩形.圆角矩形.弧形等 solid: 设置形状填充的颜色,只有android:color一个属性 andr ...

  4. 开始接触BT5-自动登录X界面

    第一种,直接登录root用户的图形界面,不用输入密码 1,安装rungetty 1 # apt-get install rungetty 2,编辑/etc/init/tty1.conf root@bt ...

  5. MongoDB C#驱动中Query几个方法 (转)

    Query.All("name", "a", "b");//通过多个元素来匹配数组 Query.And(Query.EQ("nam ...

  6. 关于offer选择

    6月1日收到移动调剂到昭通移动的电话,当时第一反应就是拒绝,后来参考了很久,犹豫了很久,答应了hr:答应了就有点后悔了:各种挑刺为难Hr;6月2日上午回绝hr: 问:陈姐,我有件重要的事忘记问了,在昭 ...

  7. php大力力 [013节]mySQL数据库乱码问题我还没解决

    <?php echo"测试<br>"; $sql_connection = mysql_connect("localhost","e ...

  8. bootstrap菜单完美解决---原创

    由于bootstrap的各方优点,偶的“点金项目细化分包管理平台”决定采用它.但在使用中遇到了一些问题,比如菜单的问题,这个菜单是用的一个JQuery的一个效果,点击后,所点击的链接处的class要加 ...

  9. JQuery操作Table元素

    使用Jquery操作Table中的tr向上或向下移动,以及全选和反选操作. 点击Table Head中的复选框,全选或反选表格中所有的复选框; 选中复选框,点击Up 按钮, tr上移;点击 Down ...

  10. 即使连网了ping也会失败

    /*************************************************************************** * 即使连网了ping也会失败 * 说明: * ...