计算几何/半平面交


  本来我是想去写POJ 1755的,然后想起了这道跟它很像的题,但应该是弱化版,所以就先写了这个……

  我们可以发现每个人的总用时,与k是呈一次函数关系的:$time_i=\frac{k}{Vrun_i}+\frac{S-k}{Vride_i}$

  然而我们要找的是某个k,使得$min(time_n-time_i)$最大

  那么就是一个线性规划问题了……这个也可以用半平面交来做……(蒟蒻并不会单纯形)

  下面的部分为了偷懒简洁我就用$a_i$和$b_i$来代替两种速度……

  我一开始想的做法是:维护一个$y=(\frac{1}{a_i}-\frac{1}{b_i})*x+\frac{S}{b_i}$的最小值(上凸壳?),然后由于线性分段函数的极值一定在分界点处取到(BZOJ 1038 瞭望塔),所以可以枚举分界点计算答案。

  然而不会写……后来膜拜了lyd神犇的代码,发现:

    这题$n\leq 100$,所以找到可能成为分界点的点,即所有直线的交点,暴力更新答案就好了……

    然后还有一个地方是将不等式重新变形了一下,将第n条直线直接减到前面n-1条直线中……

  无限ym……

 /**************************************************************
Problem: 2765
User: Tunix
Language: C++
Result: Accepted
Time:40 ms
Memory:1276 kb
****************************************************************/ //BZOJ 2765
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<iomanip>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std; const int N=;
/*******************template********************/
typedef long double lf;
#define eps 1e-12
int n,num;
lf a[N],b[N],c[N],d[N],S,anst,ansk; void calc(lf k){
lf t=1e100;
F(i,,n-) t=min(t,k*c[i]+d[i]);
if (t>anst) anst=t,ansk=k;
} int main(){
#ifndef ONLINE_JUDGE
freopen("2765.in","r",stdin);
// freopen("2765.out","w",stdout);
#endif
cin >>S>>n;
F(i,,n) cin >> a[i] >> b[i];
F(i,,n-){
c[i]=/a[i]-/b[i]-/a[n]+/b[n];
d[i]=S/b[i]-S/b[n];
} anst=-1e100;
F(i,,n-) F(j,i+,n-){
if (fabs(c[i]-c[j])<eps) continue;
lf k=(d[j]-d[i])/(c[i]-c[j]);
if (k<eps || k>S-eps) continue;
calc(k);
}
calc(); calc(S);
anst*=;
if (anst<-eps) puts("NO");
else{
if (anst<eps) anst=;
cout<<setprecision()<<fixed<<ansk<<' '<<S-ansk<<' ';
cout<<setprecision()<<fixed<<anst<<endl;
}
return ;
}

2765: [JLOI2010]铁人双项比赛

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 477  Solved: 117
[Submit][Status][Discuss]

Description


人双项比赛是吉林教育学院的一项传统体育项目。该项目比赛由长跑和骑自行车组成,参赛选手必须先完成k公里的长跑,然后完成r公里的骑车,才能到达终点。
每个参赛选手所擅长的项目不同,有的擅长长跑,有的擅长骑车。如果总赛程s=k+r一定,那么K越大,对擅长长跑的选手越有利;k越小,对擅长骑车的选手
越有利。
 
现在给定总赛程s,以及每个选手长跑和骑车的平均速度,请你求出对于某个指定的选手最有利的k和r。所谓最有利,是指选择了这个k和r后,该选手可以获得冠军,且领先第2名尽量地多。

Input

你的程序从文件读入输入数据。
输入的第一行是两个正整s和n,s表示总赛程(单位为公里,s≤231),n表示参赛总人数(2≤n≤100)。
接下来的n行每行是两个实数,分别表示每个选手长跑的平均速度和骑车的平均速度(单位为千米/小时)。
第n个选手就是指定的选手,你的任务是求出对他最有利的k和r。

Output

 
你的程序的输出包括三个数k,r, t,分别表示对第n号选手最有利的k和r(浮点数,保留小数点后2位),以及在选择k和r的情况下,第n号选手最多可以领先第2名多少秒(四舍五入到整数);如果另一个选手和该选手并列第一,则t i=0。倘若无论选择什么k,r都不能使第n号选手获胜,则输出“NO”。

Sample Input

100 3
10.0 40.0
20.0 30.0
15.0 35.0

Sample Output

14.29 85.71 612

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【2765】【JLOI2010】铁人双项比赛的更多相关文章

  1. bzoj2765[JLOI2010]铁人双项比赛

    题意:铁人双项比赛由长跑和骑自行车组成,参赛选手必须先完成k公里的长跑,然后完成r公里的骑车,才能到达终点.参赛选手有的擅长长跑,有的擅长骑车. 如果总赛程s=k+r一定,那么K越大,对擅长长跑的选手 ...

  2. bzoj2765 铁人双项比赛

    Description 铁人双项比赛是吉林教育学院的一项传统体育项目.该项目比赛由长跑和骑自行车组成,参赛选手必须先完成k公里的长跑,然后完成r公里的骑车,才能到达终点.每个参赛选手所擅长的项目不同, ...

  3. 【APIO2018】铁人两项(圆方树,动态规划)

    [APIO2018]铁人两项(圆方树,动态规划) 题面 UOJ 洛谷 BZOJ 题解 嘤嘤嘤,APIO的时候把一个组合数写成阶乘了,然后这题的70多分没拿到 首先一棵树是很容易做的,随意指定起点终点就 ...

  4. 【刷题】LOJ 2587 「APIO2018」铁人两项

    题目描述 比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成. 最近,比特镇获得了一场铁人两项锦标赛的主办权.这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段 ...

  5. [Luogu4630][APIO2018]Duathlon 铁人两项

    luogu 题目描述 比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成. 最近,比特镇获得了一场铁人两项锦标赛的主办权.这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行 ...

  6. [APIO2018] Duathlon 铁人两项 圆方树,DP

    [APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...

  7. [APIO2018]铁人两项 --- 圆方树

     [APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...

  8. [APIO2018]铁人两项 [圆方树模板]

    把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...

  9. [APIO2018]铁人两项——圆方树+树形DP

    题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...

随机推荐

  1. GoldenGate中使用FILTER,COMPUTE 和SQLEXEC命令

    本文主要介绍OGG中一些过滤或计算函数的用法,以及sqlexec的基本用法 SQLPREDICATE 在使用OGG初始化时,可以添加此参数到extract中,用于选择符合条件的记录,下面是OGG官方文 ...

  2. require.js js模块化方案

    一.为什么要用require.js? 最早的时候,所有Javascript代码都写在一个文件里面,只要加载这一个文件就够了.后来,代码越来越多,一个文件不够了,必须分成多个文件,依次加载.下面的网页代 ...

  3. 个性化修改Linux登录时的字符界面

    如果采用root账号登录编辑/etc/bashrc内容,那所有其他帐号登录都会提示相同的内容,如果想每个用户进行配置,那就去每个帐号的目录下去配置吧. 这里提供改一个文件所有帐号都能看到的个性显示内容 ...

  4. JS预览图像

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <hea ...

  5. ok6410的LCD裸机范例

    /****************************************** 实验步骤 1.配置引脚功能,将其GPI.GPJ引脚设置为VD数据输出模式,及GPJ后几位设置成LCD时钟输出: ...

  6. angularjs2 学习笔记(四) 路由

    angular2路由是管理angular2应用内部导航的一个重要内容,在angular应用中,很多的组件是通过组合完成一个复杂的应用,不可避免的是我们常会在视图间切换,那么这是就需要使用路由来管理视图 ...

  7. 菜鸟学习Struts——bean标签库

    一.Struts标签库. Struts实际上包含了4个标签库:bean,logic,html,tiles bean:用来在属性范围中定义或取得属性的,同时可以读取资源文件信息 logic:替代JSTL ...

  8. RMAN - 备份异机恢复

    OS: Oracle Linux Server release 5.7 DB: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - ...

  9. oracle group 语句探究(笔记)

    1.group by语句在oracle中没有排序功能,必须依靠order by才能实现按照预定结果的排序 2.group by 的cube扩展 with test as ( id, name from ...

  10. 无法产生coredump的问题

    我写了一个必然会崩溃的程序,名字为 test :#include "stdlib.h"#include "unistd.h" int main(){ char ...