Description

Christine and Matt are playing an exciting game they just invented: the Number Game. The rules of this game are as follows. 
The players take turns choosing integers greater than 1. First, Christine chooses a number, then Matt chooses a number, then Christine again, and so on. The following rules restrict how new numbers may be chosen by the two players:

  • A number which has already been selected by Christine or Matt, or a multiple of such a number,cannot be chosen.
  • A sum of such multiples cannot be chosen, either.

If a player cannot choose any new number according to these rules, then that player loses the game. 
Here is an example: Christine starts by choosing 4. This prevents Matt from choosing 4, 8, 12, etc.Let's assume that his move is 3. Now the numbers 3, 6, 9, etc. are excluded, too; furthermore, numbers like: 7 = 3+4;10 = 2*3+4;11 = 3+2*4;13 = 3*3+4;... are also not available. So, in fact, the only numbers left are 2 and 5. Christine now selects 2. Since 5=2+3 is now forbidden, she wins because there is no number left for Matt to choose. 
Your task is to write a program which will help play (and win!) the Number Game. Of course, there might be an infinite number of choices for a player, so it may not be easy to find the best move among these possibilities. But after playing for some time, the number of remaining choices becomes finite, and that is the point where your program can help. Given a game position (a list of numbers which are not yet forbidden), your program should output all winning moves. 
A winning move is a move by which the player who is about to move can force a win, no matter what the other player will do afterwards. More formally, a winning move can be defined as follows.

  • A winning move is a move after which the game position is a losing position.
  • A winning position is a position in which a winning move exists. A losing position is a position in which no winning move exists.
  • In particular, the position in which all numbers are forbidden is a losing position. (This makes sense since the player who would have to move in that case loses the game.)

Input

The input consists of several test cases. Each test case is given by exactly one line describing one position. 
Each line will start with a number n (1 <= n <= 20), the number of integers which are still available. The remainder of this line contains the list of these numbers a1;...;an(2 <= ai <= 20). 
The positions described in this way will always be positions which can really occur in the actual Number Game. For example, if 3 is not in the list of allowed numbers, 6 is not in the list, either. 
At the end of the input, there will be a line containing only a zero (instead of n); this line should not be processed.

Output

For each test case, your program should output "Test case #m", where m is the number of the test case (starting with 1). Follow this by either "There's no winning move." if this is true for the position described in the input file, or "The winning moves are: w1 w2 ... wk" where the wi are all winning moves in this position, satisfying wi < wi+1 for 1 <= i < k. After this line, output a blank line.

Sample Input

2 2 5
2 2 3
5 2 3 4 5 6
0

Sample Output

Test Case #1
The winning moves are: 2 Test Case #2
There's no winning move. Test Case #3
The winning moves are: 4 5 6

【题意】两个人玩游戏,给出2~20中的几个数,取出一个数后去掉该数,其倍数也去掉,已经去掉的数和当前的数相加的和如果存在数组中也去掉;

求先选哪些数会赢;

【思路】

状态压缩

要从一个状态里去掉某个位置的数  state&=~(1<<(i))

要给一个状态加入某个位置的数state|=(1<<i)

判断一个状态里是否包含某个位置的数 if(state&(1<<i))  为1则包含

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[<<];
int get_ans(int state,int x)
{
int tmp=state;
for(int i=x; i<=; i+=x)//将倍数去掉;
{
tmp&=~(<<(i-));
}
for(int i=; i<=; i++)//假设某个数在这个集合里,那么用它不断减去x, 如果得到的差值不在这个集合里,那么这个数是非法的,所以要去掉。
{
if(tmp&(<<(i-)))
for(int j=x; i-j->=; j+=x)
{
if(!(tmp&(<<(i-j-))))
{
tmp&=~(<<(i-));
break;
}
}
}
return tmp;
}
int dfs(int state)
{
if(dp[state]!=-) return dp[state];
for(int i=; i<=; i++)
{
if(state&(<<(i-)))
{
if(dfs(get_ans(state,i))==)//等于零说明没得选了,赢了
return dp[state]=;
}
}
return dp[state]=;
}
int main()
{
int cas=;
int a[],n;
while(scanf("%d",&n)!=EOF,n)
{
int state=;
memset(dp,-,sizeof(dp));
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
state|=(<<(a[i]-));
}
printf("Test Case #%d\n",cas++);
if(!dfs(state)) printf("There's no winning move.");
else
{
printf("The winning moves are:");
for(int i=; i<=n; i++)
{
if(dfs(get_ans(state,a[i]))==)
printf(" %d",a[i]);
} }
cout<<endl<<endl;
}
return ;
}

Number Game_状态压缩的更多相关文章

  1. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

  2. codeforces B - Preparing Olympiad(dfs或者状态压缩枚举)

    B. Preparing Olympiad You have n problems. You have estimated the difficulty of the i-th one as inte ...

  3. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  4. SRM 513 2 1000CutTheNumbers(状态压缩)

    SRM 513 2 1000CutTheNumbers Problem Statement Manao has a board filled with digits represented as St ...

  5. ACM: HDU 5418 Victor and World - Floyd算法+dp状态压缩

    HDU 5418 Victor and World Time Limit:2000MS     Memory Limit:131072KB     64bit IO Format:%I64d & ...

  6. [ACM_动态规划] 轮廓线动态规划——铺放骨牌(状态压缩1)

    Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...

  7. codeforces 713A A. Sonya and Queries(状态压缩)

    题目链接: A. Sonya and Queries time limit per test 1 second memory limit per test 256 megabytes input st ...

  8. 状态压缩dp问题

    问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...

  9. Marriage Ceremonies(状态压缩dp)

     Marriage Ceremonies Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

随机推荐

  1. Android之ScrollView嵌套ListView

    在ScrollView中嵌套使用ListView,ListView只会显示的内容只有一行多一点 解决方案: public class Utility { public void setListView ...

  2. linq分页扩展(转)

    原文地址:http://www.cnblogs.com/RainbowInTheSky/p/4590508.html public static List<T> ToPagedList&l ...

  3. backbonejs中的集合篇(一)

    一:集合概念 集合是多个模型,如果把模型model理解为表结构中的行,那么集合collection就是一张表,由多个行组成.我们经常需要用集合来组织和管理多个模型. 二:创建集合 1:扩展Backbo ...

  4. template模版与Underscore.js

    template模版与Underscore.js 在项目中经常使用的模版是Underscore这个js框架的实用功能. 在html里面设定模板,然后js绑定数据,这样能避免在js中出现非常多的html ...

  5. echart饼状图的学习

    一.引入js文件 <!--Step:1 引入一个模块加载器,如esl.js或者require.js--> <script src="~/Scripts/esl.js&quo ...

  6. HDU 1681 Frobenius

    题目链接:Frobenius 思路:想了很久还是没转过弯来. 递推. 初始化vis[0] = 1,每次有四种方法扩展,这样能扩展到所有能被表示的数.上界的判定,如果一万以内的数都能被表示,那以后的数肯 ...

  7. redhat enterprixe 5.0 samba 服务器 rpm 安装及配置

    Samba是著名的开源软件项目,在Linux/UNIX系统中实现了SMB/CIFS网络协议,因此使得跨平台的文件共享变得容易.在部署Windows.Linux/UNIX混合平台的企业环境时,使用Sam ...

  8. Htmlhelper—CheckBox自动生成两个input

    前言 在之前的一篇文章中小猪分享了Htmlhelper的用法.其中有意思的一个就是Checkbox,有必要单独拿出来讲一讲. Htmlhelper—CheckBox 细心的读者一定发现了当使用类似语法 ...

  9. IoTimerInLineHook

    #ifndef CXX_IOTIMERINLINEHOOK_H # include "IoTimerInlineHook.h" #endif ULONG32 SSDT_NtOpen ...

  10. UVALive 5905 Pool Construction 最小割,s-t割性质 难度:3

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...