Number Game_状态压缩
Description
The players take turns choosing integers greater than 1. First, Christine chooses a number, then Matt chooses a number, then Christine again, and so on. The following rules restrict how new numbers may be chosen by the two players:
- A number which has already been selected by Christine or Matt, or a multiple of such a number,cannot be chosen.
- A sum of such multiples cannot be chosen, either.
If a player cannot choose any new number according to these rules, then that player loses the game.
Here is an example: Christine starts by choosing 4. This prevents Matt from choosing 4, 8, 12, etc.Let's assume that his move is 3. Now the numbers 3, 6, 9, etc. are excluded, too; furthermore, numbers like: 7 = 3+4;10 = 2*3+4;11 = 3+2*4;13 = 3*3+4;... are also not available. So, in fact, the only numbers left are 2 and 5. Christine now selects 2. Since 5=2+3 is now forbidden, she wins because there is no number left for Matt to choose.
Your task is to write a program which will help play (and win!) the Number Game. Of course, there might be an infinite number of choices for a player, so it may not be easy to find the best move among these possibilities. But after playing for some time, the number of remaining choices becomes finite, and that is the point where your program can help. Given a game position (a list of numbers which are not yet forbidden), your program should output all winning moves.
A winning move is a move by which the player who is about to move can force a win, no matter what the other player will do afterwards. More formally, a winning move can be defined as follows.
- A winning move is a move after which the game position is a losing position.
- A winning position is a position in which a winning move exists. A losing position is a position in which no winning move exists.
- In particular, the position in which all numbers are forbidden is a losing position. (This makes sense since the player who would have to move in that case loses the game.)
Input
Each line will start with a number n (1 <= n <= 20), the number of integers which are still available. The remainder of this line contains the list of these numbers a1;...;an(2 <= ai <= 20).
The positions described in this way will always be positions which can really occur in the actual Number Game. For example, if 3 is not in the list of allowed numbers, 6 is not in the list, either.
At the end of the input, there will be a line containing only a zero (instead of n); this line should not be processed.
Output
Sample Input
2 2 5
2 2 3
5 2 3 4 5 6
0
Sample Output
Test Case #1
The winning moves are: 2 Test Case #2
There's no winning move. Test Case #3
The winning moves are: 4 5 6
【题意】两个人玩游戏,给出2~20中的几个数,取出一个数后去掉该数,其倍数也去掉,已经去掉的数和当前的数相加的和如果存在数组中也去掉;
求先选哪些数会赢;
【思路】
状态压缩
要从一个状态里去掉某个位置的数 state&=~(1<<(i))
要给一个状态加入某个位置的数state|=(1<<i)
判断一个状态里是否包含某个位置的数 if(state&(1<<i)) 为1则包含
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[<<];
int get_ans(int state,int x)
{
int tmp=state;
for(int i=x; i<=; i+=x)//将倍数去掉;
{
tmp&=~(<<(i-));
}
for(int i=; i<=; i++)//假设某个数在这个集合里,那么用它不断减去x, 如果得到的差值不在这个集合里,那么这个数是非法的,所以要去掉。
{
if(tmp&(<<(i-)))
for(int j=x; i-j->=; j+=x)
{
if(!(tmp&(<<(i-j-))))
{
tmp&=~(<<(i-));
break;
}
}
}
return tmp;
}
int dfs(int state)
{
if(dp[state]!=-) return dp[state];
for(int i=; i<=; i++)
{
if(state&(<<(i-)))
{
if(dfs(get_ans(state,i))==)//等于零说明没得选了,赢了
return dp[state]=;
}
}
return dp[state]=;
}
int main()
{
int cas=;
int a[],n;
while(scanf("%d",&n)!=EOF,n)
{
int state=;
memset(dp,-,sizeof(dp));
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
state|=(<<(a[i]-));
}
printf("Test Case #%d\n",cas++);
if(!dfs(state)) printf("There's no winning move.");
else
{
printf("The winning moves are:");
for(int i=; i<=n; i++)
{
if(dfs(get_ans(state,a[i]))==)
printf(" %d",a[i]);
} }
cout<<endl<<endl;
}
return ;
}
Number Game_状态压缩的更多相关文章
- POJ 3254. Corn Fields 状态压缩DP (入门级)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9806 Accepted: 5185 Descr ...
- codeforces B - Preparing Olympiad(dfs或者状态压缩枚举)
B. Preparing Olympiad You have n problems. You have estimated the difficulty of the i-th one as inte ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- SRM 513 2 1000CutTheNumbers(状态压缩)
SRM 513 2 1000CutTheNumbers Problem Statement Manao has a board filled with digits represented as St ...
- ACM: HDU 5418 Victor and World - Floyd算法+dp状态压缩
HDU 5418 Victor and World Time Limit:2000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...
- [ACM_动态规划] 轮廓线动态规划——铺放骨牌(状态压缩1)
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...
- codeforces 713A A. Sonya and Queries(状态压缩)
题目链接: A. Sonya and Queries time limit per test 1 second memory limit per test 256 megabytes input st ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- Marriage Ceremonies(状态压缩dp)
Marriage Ceremonies Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
随机推荐
- hdu---(1280)前m大的数(计数排序)
前m大的数 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- java.lang.ClassNotFoundException: org.apache.http.util.Args
java.lang.ClassNotFoundException: org.apache.http.util.Args at org.apache.catalina.loader.WebappClas ...
- MASS批量维护
T-CODE: MASS 批量更改MASS_CHARVAL 特征的批量维护MASS_EINE 信息记录的成批维护MASS_EKKO 采购订单的成批维护MASS_MARC 后勤/配送的成批维护MASS_ ...
- 实例化Layout中的布局文件(xml)
什么是LayoutInflater This class is used to instantiate layout XML file into its corresponding View obje ...
- linux 下crontabs使用
安装crontab:[root@CentOS ~]# yum install vixie-cron[root@CentOS ~]# yum install crontabs说明:vixie-cron软 ...
- PowerPivot安装完成后创建网站或网站集报错解决办法
根据上一篇“在现有 SharePoint 服务器上安装 PowerPivot for SharePoint”后,新建网站或网站集时报错,重新配置了一下PowerPivot For SharePoint ...
- C#学习7.31判断体重是否超标
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- MySql插入记录时判断
我们在开发数据库相关的逻辑过程中, 经常检查表中是否已经存在这样的一条记录, 如果存在则更新或者不做操作, 如果没有存在记录,则需要插入一条新的记录. 这样的逻辑固然可以通过两条sql语句完成. SE ...
- 结构化视角看django
分析一个软件的整体框架,我认为应该从静态和动态两方面入手.静态方面,看它有哪些用例,即有哪些功能模块:动态方面,看主流程如何连接上这些模块 静态方面:分View.Model.Template.Sess ...
- https需要的类
import java.io.IOException; import java.net.InetAddress; import java.net.InetSocketAddress; import j ...