luogu P3811 【模板】乘法逆元
题目背景
这是一道模板题
题目描述
给定n,p求1~n中所有整数在模p意义下的乘法逆元。
输入输出格式
输入格式:
一行n,p
输出格式:
n行,第i行表示i在模p意义下的逆元。
输入输出样例
输入样例#1:
10 13
输出样例#1:
1
7
9
10
8
11
2
5
3
4
说明
\(1 \leq n \leq 3 \times 10 ^ 6, n < p < 20000528 1≤n≤3×10^6,n<p<20000528\)
输入保证 p p 为质数。
逆元可以线性求:
inv(i)=((p-p/i)*inv[p%i])%p
也可以扩展欧几里得求
那么就是
ax+p(模数)y=1的解
也可以根据快速幂来求
根据费马小定理
逆元就是a^(p-2)
以上几种方法均需保证p为素数
#include<cstdio>
#include<algorithm>
#define LL long long
LL inv[3000053];
//int inv[MAXN];
void INV(int a,int p)
{
inv[1] = 1;
for (int i=2; i<=a; ++i)
inv[i] = (LL)((p-(p/i)%p)%p*inv[p%i]%p)%p;
}
int main() {
int n,p;
scanf("%d%d",&n,&p);
INV(n,p);
for(int i=1;i<=n;++i)
printf("%d\n",inv[i]);
return 0;
}
luogu P3811 【模板】乘法逆元的更多相关文章
- 【洛谷P3811】[模板]乘法逆元
乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...
- luogu P3811线性求逆元
首先扩O:T了一个点(因为上界松),83分. #include <cstdio> using namespace std; int n, p; void exgcd(int a, int ...
- 逆元-P3811 【模板】乘法逆元-洛谷luogu
https://www.cnblogs.com/zjp-shadow/p/7773566.html -------------------------------------------------- ...
- P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 线性递推逆元模板 #include<iostream> #include<cstdio> #include<cstring> #def ...
- [洛谷P3811]【模板】乘法逆元
P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...
- 模板【洛谷P3811】 【模板】乘法逆元
P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...
- 洛谷 P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...
- 洛谷——P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...
- 洛谷—— P3811 【模板】乘法逆元
https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...
随机推荐
- 编译与安装 OpenSSL
编译与安装 OpenSSL prefix 是安装目录,openssldir 是配置文件目录,另外建议安装两次,shared 作用是生成动态连接库.linux版的OpenSSL下载地址为:https:/ ...
- COMP9021--6.6
1. 在print结尾处添加end='' print默认在字符串结尾处添加换行符,添加end=''后表示这个语句并没有结束,结尾不换行 2. 为了减少重复代码以及便于修改,我们可以编写函数 1) 函数 ...
- Pyhon从入门到致命
第一章 基础 1.python2和python3的区别 2.数据类型 2.1 int 整型 2.2 str 字符串不可变类型 2.3 bool 布尔类型 2.4 list 列表 2.5 tuple 元 ...
- python并发编程之线程(创建线程,锁(死锁现象,递归锁),GIL锁)
什么是线程 进程:资源分配单位 线程:cpu执行单位(实体),每一个py文件中就是一个进程,一个进程中至少有一个线程 线程的两种创建方式: 一 from threading import Thread ...
- Applied Nonparametric Statistics-lec7
Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/9 经过前面的步骤,我们已经可以判断几个样本之间是否 ...
- Mr. Panda and Crystal HDU - 6007 最短路+完全背包
题目:题目链接 思路:不难看出,合成每个宝石需要消耗一定的魔力值,每个宝石有一定的收益,所以只要我们知道每个宝石合成的最小花费,该题就可以转化为一个背包容量为初始魔力值的完全背包问题,每个宝石的最小花 ...
- hdu 6312
Problem Description Alice and Bob are playing a game.The game is played on a set of positive integer ...
- 常用类--Date日期类,SimpleDateFormat日期格式类,Calendar日历类,Math数学工具类,Random随机数类
Date日期类 Date表示特定的时间,精确到毫秒; 构造方法: public Data() public Date(long date) 常用方法: public long getTime() pu ...
- C# 时间与时间戳互转 13位|13位時間戳与日期换转
这里直接上代码 懂C# 的程序猿 一看便知道如何使用的... /// <summary> /// 将Unix时间戳转换为DateTime类型时间 /// </summary> ...
- 用Javascript实现图片的缓慢缩放效果
<body> <!--页面布局:一张图片两个按钮--> <div style = "width:400px;margin:0 auto"> &l ...