题目:

题目描述

已知多项式方程:

a0+a1x+a2x2+…+anxn=0

求这个方程在[1,m]内的整数解(n 和 m 均为正整数)。

输入格式

输入共 n+2 行。 
第一行包含 2 个整数 n、m,每两个整数之间用一个空格隔开。 
接下来的 n+1 行每行包含一个整数,依次为 a0,a1,a2, … ,an 。

输出格式

第一行输出方程在[1,m]内的整数解的个数。 
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,m]内的一个整数解。

样例数据 1

输入  [复制]

2 10 

-2 
1

输出

1

题解

  这道题不得不说思想很巧···以前已知没有遇到过···
  首先,如果等式两边模上一个数后依然为0那么原来的等式是有可能成立的··因此我们可以取几个质数然后看每次算完后模这几个质数下来的答案是否都为0,如果是的话说明原来等式可能成立(概率很大)
  但是如果这样从1——m一个一个枚举暴力算还是会超时的···
  我们还可以发现一个性质··就是如果一个x带入等式模质数p为0,那么x+k*p带入肯定等式模质数p肯定也一定为0··因此我们枚举小于质数的数计算即可·····这样复杂度就是k*p*n的,其中p为最大质数的大小··k为选择的质数的数量····注意质数选小一点···10000左右即可
  但这道题我写出来常树很大··怎么优化都不能过bzoj··只能过自己学校的···如果要参考我代码的同学还是算了吧···

代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
using namespace std;
const int N=1e4+;
const int M=;
const int P=1e6+;
int pri[]={,,,,,};
int a[M][],n,m,pre[][],jud[][],ans[P],cnt=;
char s[N];
inline int R()
{
char c;int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar()) f=(f<<)+(f<<)+c-'';
return f;
}
inline bool check(int op,int x)
{
long long ans=;
for(register int i=;i<=n;i++)
ans=(ans+pre[op][i]*a[i][op])%pri[op];
if(ans<) ans+=pri[op];
return ans==;
}
int main()
{
//freopen("a.in","r",stdin);
n=R(),m=R();
for(register int i=;i<=n;i++)
{
bool flag=false;
scanf("%s",s+);int len=strlen(s+);
if(s[]=='-') flag=true;
else
for(int j=;j<=;j++) a[i][j]=s[]-'';
for(register int j=;j<=len;j++)
for(register int k=;k<=;k++)
a[i][k]=(a[i][k]*%pri[k]+s[j]-'')%pri[k];
if(flag)
for(int j=;j<=;j++) a[i][j]=-a[i][j];
}
for(register int i=;i<=;i++)
for(register int j=;j<pri[i];j++)
{
pre[i][]=;
for(int k=;k<=n;k++) pre[i][k]=pre[i][k-]*j%pri[i];
if(check(i,j)) jud[i][j]=true;
}
for(register int i=;i<=m;i++)
{
bool flag=true;
for(register int j=;j<=;j++)
if(!jud[j][i%pri[j]])
{
flag=false;break;
}
if(flag) ans[++cnt]=i;
}
printf("%d\n",cnt);
for(register int i=;i<=cnt;i++) printf("%d\n",ans[i]);
return ;
}
  

刷题总结——解方程(NOIP2014)的更多相关文章

  1. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  2. leetcode刷题-37解数独

    题目 编写一个程序,通过已填充的空格来解决数独问题. 一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次.数字 1-9 在每一列只能出现一次.数字 1-9 在每一个以粗实线分隔的 3x ...

  3. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  4. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  5. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  6. 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)

    心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...

  7. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  8. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  9. 【NOIP2014】解方程

    题目描述 已知多项式方程 \[a_0 + a_1x + a_2x^2 + \dots +a_nx^n=0\] 求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数). 输入输出格 ...

随机推荐

  1. bzoj1037 [ZJOI2008]生日聚会

    Description 今天是hidadz小朋友的生日,她邀请了许多朋友来参加她的生日party. hidadz带着朋友们来到花园中,打算坐成一排玩游戏.为了游戏不至于无聊,就座的方案应满足如下条件: ...

  2. [学习笔记] Markdown语法备忘

    Markdown语法总结 标题 # 这是一级标题 ## 这是二级标题 ### 这是三级标题 #### 这是四级标题 ##### 这是五级标题 ###### 这是六级标题 注意#后面要加空格 字体 ** ...

  3. Python 进程 线程总结

    操作系统的底层是 进程 线程 实现的 进程 操作系统完成系统进程的切换,中间有状态的保存.进程有自己独立的空间,进程多,资源消耗大 进程是最小的资源管理单位 可以理解为盛放线程的容器 线程 线程是最小 ...

  4. Ubuntu编译Android源码过程中的空间不足解决方法

    Android源码一般几十G,就拿Android5.0来说,下载下来大概也有44G左右,和编译产生的文件以及Ubuntu系统占用的空间加起来,源码双倍的空间都不够有.编译源码前能分配足够的空间再好不过 ...

  5. shell脚本,awk在需要的行上打打印空行。

    注解: 判断每行中是否包含字母a,包含了,就将$1的值赋值给变量a,然后判断变量a是否存在,存在打印一个空行,在将变量的值使用空变量b赋值,最后在打印输出. 结果就是在包含有字符a的行上打印一个空行.

  6. Mac下快捷键的符号所对应的按键

  7. VueX源码分析(4)

    VueX源码分析(4) /module store.js /module/module.js import { forEachValue } from '../util' // Base data s ...

  8. 配置centos7解决 docker Failed to get D-Bus connection 报错

    在centos7的容器里面出现了一个BUG,就是serveice启动服务的时候出现报错,不能用service启动服务.[root@e13c3d3802d0 /]# service httpd star ...

  9. NOIP模拟赛 路面修整

    [题目描述] FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个 ...

  10. Tarjan算法 详解+心得

    Tarjan算法是由Robert Tarjan(罗伯特·塔扬,不知有几位大神读对过这个名字) 发明的求有向图中强连通分量的算法. 预备知识:有向图,强连通. 有向图:由有向边的构成的图.需要注意的是这 ...