刷题总结——解方程(NOIP2014)
题目:
题目描述
已知多项式方程:
a0+a1x+a2x2+…+anxn=0
求这个方程在[1,m]内的整数解(n 和 m 均为正整数)。
输入格式
输入共 n+2 行。
第一行包含 2 个整数 n、m,每两个整数之间用一个空格隔开。
接下来的 n+1 行每行包含一个整数,依次为 a0,a1,a2, … ,an 。
输出格式
第一行输出方程在[1,m]内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,m]内的一个整数解。
样例数据 1
题解
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
using namespace std;
const int N=1e4+;
const int M=;
const int P=1e6+;
int pri[]={,,,,,};
int a[M][],n,m,pre[][],jud[][],ans[P],cnt=;
char s[N];
inline int R()
{
char c;int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar()) f=(f<<)+(f<<)+c-'';
return f;
}
inline bool check(int op,int x)
{
long long ans=;
for(register int i=;i<=n;i++)
ans=(ans+pre[op][i]*a[i][op])%pri[op];
if(ans<) ans+=pri[op];
return ans==;
}
int main()
{
//freopen("a.in","r",stdin);
n=R(),m=R();
for(register int i=;i<=n;i++)
{
bool flag=false;
scanf("%s",s+);int len=strlen(s+);
if(s[]=='-') flag=true;
else
for(int j=;j<=;j++) a[i][j]=s[]-'';
for(register int j=;j<=len;j++)
for(register int k=;k<=;k++)
a[i][k]=(a[i][k]*%pri[k]+s[j]-'')%pri[k];
if(flag)
for(int j=;j<=;j++) a[i][j]=-a[i][j];
}
for(register int i=;i<=;i++)
for(register int j=;j<pri[i];j++)
{
pre[i][]=;
for(int k=;k<=n;k++) pre[i][k]=pre[i][k-]*j%pri[i];
if(check(i,j)) jud[i][j]=true;
}
for(register int i=;i<=m;i++)
{
bool flag=true;
for(register int j=;j<=;j++)
if(!jud[j][i%pri[j]])
{
flag=false;break;
}
if(flag) ans[++cnt]=i;
}
printf("%d\n",cnt);
for(register int i=;i<=cnt;i++) printf("%d\n",ans[i]);
return ;
}
刷题总结——解方程(NOIP2014)的更多相关文章
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
- leetcode刷题-37解数独
题目 编写一个程序,通过已填充的空格来解决数独问题. 一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次.数字 1-9 在每一列只能出现一次.数字 1-9 在每一个以粗实线分隔的 3x ...
- LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)
心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- 【NOIP2014】解方程
题目描述 已知多项式方程 \[a_0 + a_1x + a_2x^2 + \dots +a_nx^n=0\] 求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数). 输入输出格 ...
随机推荐
- Trie入门讲解
我们常常用Trie(也叫前缀树)来保存字符串集合.如下图所示就是一个Trie. 上图表示的字符串集合为$\{a,to,tea,ted,ten,i,in,inn \}$,每个单词的结束位置对应一个“单词 ...
- DROP GROUP - 删除一个用户组
SYNOPSIS DROP GROUP name DESCRIPTION 描述 DROP GROUP 从数据库中删除指定的组.组中的用户不被删除. 组中的用户不被删除. PARAMETERS 参数 n ...
- Java写诗程序
import java.util.Random; public class test_word { public static void main(String[] args) { System.ou ...
- Nuget使用备忘
菜单:工具-库程序包管理器-管理解决方案的NuGet程序包,搜索,下载,安装 或者 工具-库程序包管理器-程序包管理器控制台,输入PM命令,如: install-package log4net 如果不 ...
- ssh整合思想 Spring分模块开发 crud参数传递 解决HTTP Status 500 - Write operations are not allowed in read-only mode (FlushMode.MANUAL): Turn your Session into FlushMode.COMMIT/AUTO or(增加事务)
在Spring核心配置文件中没有增加事务方法,导致以上问题 Action类UserAction package com.swift.action; import com.opensymphony.xw ...
- java子父类初始化顺序 (1)父类静态代码块(2)父类静态变量初始化(3)子类静态代码块(4)子类静态变量初始化(5)main(6)有对象开辟空间都为0(7)父类显示初始化(8)父类构造(9)子类显示初始化(10)子类构造
标题 静态代码块与静态成员变量还要看代码的先后顺序 看程序,说出结果 结果为: x=0 看程序,说出结果 结果如下: 补充 : 静态代码块:static{ } 在JVM加载时即执行,先于主方法执行,用 ...
- iOS动画之iOS UIBezierPath类 介绍
感谢:http://blog.csdn.net/crayondeng/article/details/11093689 使用UIBezierPath类可以创建基于矢量的路径,这个类在UIKit中.此类 ...
- 【bitset 技巧 分块】bzoj5087: polycomp
神仙zq发现了${n^2\sqrt n}\over 32$做法 Description 你有三个系数为0,1的多项式f(x),g(x),h(x) 求f(g(x)) mod h(x) 为方便起见,将答案 ...
- 数字内置方法详解(int/long/float/complex)
一.常用方法 1.1.int 以下是Python2.7的int内置函数: 序号 函数名 作用 举例 1 int.bit_length() 二进制存储这个整数至少需要多少bit(位). >> ...
- Python基础(三)—— print()格式化输出变量
先举一个简单的例子说明: name = 'Jack' answer = input('你好,%s '%(name) + '你认识 Sean 不, 输入 yes or no\n') print('Sea ...