题目

After going through the receipts from your car trip through Europe this summer,

you realised that the gas prices varied between the cities you visited. Maybe you

could have saved some money if you were a bit more clever about where you filled

your fuel?

To help other tourists (and save money yourself next time), you want to write

a program for finding the cheapest way to travel between cities, filling your tank

on the way. We assume that all cars use one unit of fuel per unit of distance, and

start with an empty gas tank.

输入格式

The first line of input gives 1 ≤ n ≤ 1000 and 0 ≤ m ≤ 10000, the number of cities and roads. Then

follows a line with n integers 1 ≤ pi ≤ 100, where pi

is the fuel price in the ith city. Then follow m lines

with three integers 0 ≤ u, v < n and 1 ≤ d ≤ 100, telling that there is a road between u and v with

length d. Then comes a line with the number 1 ≤ q ≤ 100, giving the number of queries, and q lines

with three integers 1 ≤ c ≤ 100, s and e, where c is the fuel capacity of the vehicle, s is the starting

city, and e is the goal.

输出格式

For each query, output the price of the cheapest trip from s to e using a car with the given capacity,

or ‘impossible’ if there is no way of getting from s to e with the given car.

输入样例

5 5

10 10 20 12 13

0 1 9

0 2 8

1 2 1

1 3 11

2 3 7

2

10 0 3

20 1 4

输出样例

170

impossible

题解

我们把点和在该点拥有的油量看做一个状态,建立分层图

每个点向其相邻的油量减少量为路程长的点连边【费用0】,向其自身油量+1的点连边【费用为油价】

跑dijkstra【可能SPFA跑分层图什么的会快一些】

复杂度\(O(q * n * c * log(n + c))\)

注意每一只加1升油,不能随意加油,否则就会退化到\(O(q*n*c^2*log(n + c))\)

#include<iostream>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1005,maxm = 20005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int n,m,h[maxn],ne = 2;
struct EDGE{int to,nxt,w;}ed[maxm];
void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
}
int d[maxn][105],p[maxn],vis[maxn][105];
struct node{int u,c,f;};
inline bool operator <(const node& a,const node& b){return a.f > b.f;}
priority_queue<node> q;
int solve(int S,int T,int C){
for (int i = 1; i <= n; i++)
for (int j = 0; j <= C; j++)
d[i][j] = INF,vis[i][j] = 0;
d[S][0] = 0;
q.push((node){S,0,d[S][0]});
int v; node u;
while (!q.empty()){
u = q.top(); q.pop();
if (vis[u.u][u.c]) continue;
vis[u.u][u.c] = true;
Redge(u.u)
if (ed[k].w <= u.c && !vis[to = ed[k].to][v = u.c - ed[k].w] && d[to][v] > d[u.u][u.c]){
d[to][v] = d[u.u][u.c]; q.push((node){to,v,d[to][v]});
}
if (!vis[u.u][u.c + 1] && d[u.u][u.c + 1] > d[u.u][u.c] + p[u.u]){
d[u.u][u.c + 1] = d[u.u][u.c] + p[u.u];
q.push((node){u.u,u.c + 1,d[u.u][u.c + 1]});
}
}
int ans = INF;
for (int i = 0; i <= C; i++) ans = min(ans,d[T][i]);
return ans;
}
int main(){
n = read(); m = read();
REP(i,n) p[i] = read();
int a,b,w;
while (m--){
a = read() + 1; b = read() + 1; w = read();
build(a,b,w);
}
int q = read(),S,T,C,ans;
while (q--){
C = read(); S = read() + 1; T = read() + 1;
ans = solve(S,T,C);
if (ans == INF) puts("impossible");
else printf("%d\n",ans);
}
return 0;
}

UVA11367 Full Tank? 【分层图最短路】的更多相关文章

  1. poj3635Full Tank?[分层图最短路]

    Full Tank? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7248   Accepted: 2338 Descri ...

  2. HDU 5669 线段树优化建图+分层图最短路

    用线段树维护建图,即把用线段树把每个区间都标号了,Tree1中子节点有到达父节点的单向边,Tree2中父节点有到达子节点的单向边. 每次将源插入Tree1,汇插入Tree2,中间用临时节点相连.那么T ...

  3. BZOJ 2763 分层图最短路

    突然发现我不会分层图最短路,写一发. 就是同层中用双向边相连,用单向边连下一层 #include <cstdio> #include <algorithm> #include ...

  4. 【网络流24题】 No.15 汽车加油行驶问题 (分层图最短路i)

    [题意] 问题描述:给定一个 N*N 的方形网格,设其左上角为起点◎, 坐标为( 1, 1), X 轴向右为正, Y轴向下为正, 每个方格边长为 1, 如图所示. 一辆汽车从起点◎出发驶向右下角终点▲ ...

  5. 【网络流24题】 No.14 孤岛营救问题 (分层图最短路)

    [题意] 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛, 营救被敌军俘虏的大兵瑞恩. 瑞恩被关押在一个迷宫里, 迷宫地形复杂, 但幸好麦克得到了迷宫的地形图. 迷宫的外形是 ...

  6. BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路

    BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路 Description “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切, ...

  7. BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路

    BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M ...

  8. Nowcoder contest 370H Rinne Loves Dynamic Graph【分层图最短路】

    <题目链接> 题目大意:Rinne 学到了一个新的奇妙的东西叫做动态图,这里的动态图的定义是边权可以随着操作而变动的图.当我们在这个图上经过一条边的时候,这个图上所有边的边权都会发生变动. ...

  9. ACM-ICPC 2018 南京赛区网络预赛 L 【分层图最短路】

    <题目链接> 题目大意: 有N个城市,这些城市之间有M条有向边,每条边有权值,能够选择K条边 边权置为0,求1到N的最短距离. 解题分析: 分层图最短路模板题,将该图看成 K+1 层图,然 ...

  10. BZOJ2662[BeiJing wc2012]冻结——分层图最短路

    题目描述 “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切,封印于卡片之中„„”     在这个愿望被实现以后的世界里,人们享受着魔法卡片(Spe ...

随机推荐

  1. 八数码问题(一) 暴力BFS + STL

    八数码问题是一个经典的人工智能问题.具体问题不累述了. 思路:由于存在多组测试数据,可以考虑“打表法“.所谓打表法,即枚举所有的初始情况,记录其到达终点的路径.而在这个题目中,顺序打表会调用很多次BF ...

  2. SC || 那些CheckStyle中的错误们

    lab5里给了我们一个checkstyle查代码风格的方法.. 然后 lab4代码 copy一份! 添加checkstyle! 项目 右键 checkstyle!(自信脸) 3s后——7256 war ...

  3. NSOperation、NSOperationQueue

    NSOperation.NSOperationQueue NSOperation 和 NSOperationQueue 配合使用也能实现多线程. NSOperation 继承于 NSObject,是一 ...

  4. console.log与console.dir的区别

    今天学习promise的时候看到了console.dir这个方法,感到很好奇,查了以下感觉又长知识了 在Chrome中,控制台对象定义了两个似乎做同样事情的方法: console.log() cons ...

  5. ubuntu16.04安装 java JDK8

    安装openjdk1.更新软件包列表: sudo apt-get update 2.安装openjdk-8-jdk: sudo apt-get install openjdk-8-jdk 3.查看ja ...

  6. shell 练习 - 第七周

    1. 用shell实现传入进程pid, 查看对应进程/proc下CPU.内存指标 #!/bin/bash read -p "Input PID Value: " pid pid_e ...

  7. 03等待多个线程返回WaitForMultipleObject

    二. WaitForMultipleObject 等待单个线程返回 1. 函数原型 DWORD WINAPI WaitForMultipleObjects( _In_ DWORD nCount, _I ...

  8. 忘记root密码怎么办-单用户模式修改root密码

    忘记root密码怎么办-单用户模式修改root密码================================= 1,开机3秒内按下向下的方向键,目的是为了不让它进入系统,而是停留在开机界面. 2 ...

  9. 896. Monotonic Array

    An array is monotonic if it is either monotone increasing or monotone decreasing. An array A is mono ...

  10. Python中的端口协议之基于UDP协议的通信传输

    UDP协议: 1.python中基于udp协议的客户端与服务端通信简单过程实现 2.udp协议的一些特点(与tcp协议的比较)        3.利用socketserver模块实现udp传输协议的并 ...