cf 853 D Michael and Charging Stations [dp]
题面:
思路:
看到题目,第一思路是贪心,但是我很快就否决掉了(其实分类贪心也可以做)
然后就想,贪心不能解决的状态缺失,是否可以用dp来解决呢?
事实证明是可以的
我们设dp[i][j]表示第i天,还剩j*100积分的时候,最小花费的现金
有转移:dp[i][j]=min(dp[i-1][k]+cost[i]-(k-j)*100)(k=j+1...min(30,j+cost[i]/100)
最后再dp[i][j]=min(dp[i][j],dp[i-1][j-cost[i]/1000]+cost[i])
这里k的上限是30是因为最多攒3000积分以后就必须要花掉,不然也不会更加划算(支付1000+2000)(证明太长了......)
Code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e9
using namespace std;
inline int read(){
int re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
int n,a[];
int dp[][];
int main(){
int i,j,k,ans=inf;
n=read();
for(i=;i<=n;i++) a[i]=read();
for(i=;i<=;i++) dp[][i]=inf;
for(i=;i<=n;i++){
for(j=;j<=;j++){
dp[i][j]=inf;
for(k=min(,j+a[i]/);k>j;k--){
dp[i][j]=min(dp[i][j],dp[i-][k]+a[i]-(k-j)*);
}
if(j>=a[i]/) dp[i][j]=min(dp[i][j],dp[i-][j-a[i]/]+a[i]);
// cout<<i<<ends<<j<<ends<<dp[i][j]<<endl;
}
}
for(i=;i<=;i++) ans=min(ans,dp[n][i]);
printf("%d\n",ans);
}
cf 853 D Michael and Charging Stations [dp]的更多相关文章
- codeforces:Michael and Charging Stations分析和实现
题目大意 迈克尔接下来n天里分别需要支付C[1], C[2], ... , C[n]费用,但是每次支付费用可以选择使用优惠或不使用优惠,每次使用价值X的优惠那么迈克尔所能使用的优惠余量将减少X并且当天 ...
- 【Codeforces】CF 467 C George and Job(dp)
题目 传送门:QWQ 分析 dp基础题. $ dp[i][j] $表示前i个数分成j组的最大和. 转移显然. 吐槽:做cf题全靠洛谷翻译苟活. 代码 #include <bits/stdc++. ...
- CF 219D Choosing Capital for Treeland 树形DP 好题
一个国家,有n座城市,编号为1~n,有n-1条有向边 如果不考虑边的有向性,这n个城市刚好构成一棵树 现在国王要在这n个城市中选择一个作为首都 要求:从首都可以到达这个国家的任何一个城市(边是有向的) ...
- CF 161D Distance in Tree【树DP】
题目大意:给一棵树,求树上两点之间距离为K的点对数目. 方程含义: dp(i,j)表示从已经遍历过的点到当前点i,路径长度为 j 的路径条数.因此,对于当前点,每当遍历了其中一个儿子节点的时候,首先统 ...
- (中等) CF 311B Cats Transport,斜率优化DP。
Zxr960115 is owner of a large farm. He feeds m cute cats and employs p feeders. There's a straight r ...
- CF 633 F. The Chocolate Spree 树形dp
题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...
- CF 1013E Hills——隔项转移的DP
题目:http://codeforces.com/contest/1013/problem/E 设 dp[ i ][ j ][ 0/1 ] 表示前 i 个位置,有 j 个山峰,第 i 个位置不是/是山 ...
- 【Codeforces】CF 9 D How many trees?(dp)
题目 传送门:QWQ 分析 用$ dp[i][j] $表示用i个节点,有多少深度小于等于j的二叉树. 答案是$ dp[n][n] - dp[n][h-1] $ 转移时枚举左子树的节点数量,就可以知道右 ...
- CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。
题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...
随机推荐
- Linux---cp命令学习
cp命令 cp source_file target_file 能够复制文件,如果target_file所指定的文件不存在,cp就创建这个文件,如果已经存在,就把文件内容清空并把source_fil ...
- C#的接口基础教程之六 接口转换
C#中不仅支持.Net 平台,而且支持COM平台.为了支持 COM和.Net,C# 包含一种称为属性的独特语言特性.一个属性实际上就是一个 C# 类,它通过修饰源代码来提供元信息.属性使 C# 能够支 ...
- 问题006:为什么用java.exe执行编译的类文件的时候,不这样写java Welcome.class
为什么用java.exe执行编译的类文件的时候,不这样写java Welcome.class 是因为java虚拟机调用Welcome的时候,已经替我们增减了.class,如果你还要写java Welc ...
- Vue 父组件传值到子组件
vue 父组件给子组件传值中 这里的AccessList就是子组件 如果 是静态传值的话直接 msg="xxx"就好 这里动态取值的话就 :msg=xxxxx ________ ...
- mysql 报错 Operand should contain 1 column(s)
报错 Operand should contain 1 column(s) 原因 select 后面加了 () select (x,x,x)
- 生产环境LAMP搭建 - 基于 fastcgi
生产环境LAMP搭建 - 基于 fastcgi 由于在module模式,php只是已http的模块形式存在,无形中加重了http的服务负载,通常在企业架构中,使用fastcgi的模式,将所有的服务都设 ...
- 项目实战14.1—ELK 企业内部日志分析系统
本文收录在Linux运维企业架构实战系列 一.els.elk 的介绍 1.els,elk els:ElasticSearch,Logstash,Kibana,Beats elk:ElasticSear ...
- Aliyun ECS简单的安装nginx(1.8.0)
1. yum install gcc-c++ 2. yum install -y pcre pcre-devel 3. yum install -y zlib zlib-devel 4. yum in ...
- Linux基础-Linux常用命令
Linux(/'lainʌks/)系统特点:稳定,安全,开源(一切皆文件) 装上SSH协议就可以连接Linux 装虚拟机(SSH) win用xshell工具 Linux命令:每日一个linux命令 p ...
- mui的选项卡js选中指定项
dom结构:在一定条件下想默认选中第二个选项卡 <div id="segmentedControl" class="mui-segmented-control mu ...