Python-OpenCV中的filter2D()函数
使用自定义内核对图像进行卷积。该功能将任意线性滤波器应用于图像。支持就地操作。当光圈部分位于图像外部时,该功能会根据指定的边框模式插入异常像素值。

语法
函数原型:
dst=cv.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])
参数:
| 参数 | 描述 |
| src | 原图像 |
| dst | 目标图像,与原图像尺寸和通过数相同 |
| ddepth | 目标图像的所需深度 |
| kernel | 卷积核(或相当于相关核),单通道浮点矩阵;如果要将不同的内核应用于不同的通道,请使用拆分将图像拆分为单独的颜色平面,然后单独处理它们。 |
| anchor | 内核的锚点,指示内核中过滤点的相对位置;锚应位于内核中;默认值(-1,-1)表示锚位于内核中心。 |
| detal | 在将它们存储在dst中之前,将可选值添加到已过滤的像素中。类似于偏置。 |
| borderType | 像素外推法,参见BorderTypes |
该函数实际计算的是相关性,而不是卷积
$$\texttt{dst} (x,y) = \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} } \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )$$
在内核足够大(~11x11或者更大)的时候,该函数使用DFT算法,对于小内核则直接计算。
也可见,anchor相当于坐标轴平移。
其中ddepth表示目标图像的所需深度,它包含有关图像中存储的数据类型的信息,可以是unsigned char(CV_8U),signed char(CV_8S),unsigned short(CV_16U)等等...
| Input depth (src.depth()) | Output depth (ddepth) |
|---|---|
| CV_8U | -1/CV_16S/CV_32F/CV_64F |
| CV_16U/CV_16S | -1/CV_32F/CV_64F |
| CV_32F | -1/CV_32F/CV_64F |
| CV_64F | -1/CV_64F |
Note:当ddepth=-1时,表示输出图像与原图像有相同的深度。
例子
图像内核是一个小矩阵,用于应用您可能在Photoshop或Gimp中找到的效果,例如模糊,锐化,轮廓或浮雕。它们还用于机器学习中的“特征提取”,这是一种用于确定图像最重要部分的技术。在这种情况下,该过程更普遍地称为“卷积”(参见:卷积神经网络)。
有许多有趣的内核,下面一一介绍:
1、模糊(blur)
模糊内核消除了相邻像素值之间的差异。内核如下:
| 0.0625 | 0.125 | 0.0625 |
| 0.125 | 0.25 | 0.125 |
| 0.0625 | 0.125 | 0.125 |
代码:
import cv2
import numpy as np def solve(): src = cv2.imread("./Pictures/car001.jpg")
if src is None:
return -1 kernel = np.array((
[0.0625, 0.125, 0.0625],
[0.125, 0.25, 0.125],
[0.0625, 0.125, 0.0625]), dtype="float32") dst = cv2.filter2D(src, -1, kernel)
htich = np.hstack((src, dst))
cv2.imwrite("./Pictures/car.jpg", htich)
cv2.imshow('merged_img', htich)
cv2.waitKey(0) return 0 if __name__ == "__main__":
solve()
效果:

2、索贝尔(sobel)
sobel内核用于仅显示特定方向上相邻像素值的差异,分为left sobel、right sobel(检测梯度的水平变化)、top sobel、buttom sobel(检测梯度的垂直变化)。
例如,buttom sobel
| -1 | -2 | -1 |
| 0 | 0 | 0 |
| 1 | 2 | 1 |
代码与上面类似,只需修改krenel的值。

3、浮雕(emboss)
通过强调像素的差在给定方向的Givens深度的错觉。在这种情况下,沿着从左上到右下的直线的方向。
| -2 | -1 | 0 |
| -1 | 1 | 1 |
| 0 | 1 | 2 |
效果:

4、大纲(outline)
一个轮廓内核(也称为“边缘”的内核)用于突出显示的像素值大的差异。具有接近相同强度的相邻像素旁边的像素在新图像中将显示为黑色,而与强烈不同的相邻像素相邻的像素将显示为白色。
| -1 | -1 | -1 |
| -1 | 8 | -1 |
| -1 | -1 | -1 |
效果:

5、锐化(sharpen)
该锐化内核强调在相邻的像素值的差异。这使图像看起来更生动。
| 0 | -1 | 0 |
| -1 | 5 | -1 |
| 0 | -1 | 0 |
效果:

6、拉普拉斯算子(laplacian operator)
拉普拉斯算子可以用于边缘检测,对于检测图像中的模糊也非常有用。
| 0 | 1 | 0 |
| 1 | -4 | 1 |
| 0 | 1 | 0 |
效果:

7、分身(identity)
这个非常简单,就是原图(不考虑边界时),How boring!
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 0 |
拓展部分
正如您在本博文中所收集的那样,我们必须 手动定义每个内核以应用各种操作,例如平滑,锐化和边缘检测。
如何定义内核达到你想要的效果,这并不是一件简单的事情。
现在有一种神经网络——CNN,通过应用卷积滤波器,非线性激活函数,汇集和反向传播,CNN能够学习过滤器(的权重),可以检测网络较低层中的边缘和类似blob的结构 - 然后使用边缘和结构作为构建块,最终在网络的更深层中检测更高级别的对象(即,面部,猫,狗,杯等)。这样就不必手动定义过滤器了。
参考链接:
1、Depth combination https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#filter_depths
2、cv2.filter2d()opencv中ddepth参数的解释?https://stackoverflow.com/questions/43392956/explanation-for-ddepth-parameter-in-cv2-filter2d-opencv
3、Image-kernels Demohttp://setosa.io/ev/image-kernels/
Python-OpenCV中的filter2D()函数的更多相关文章
- OpenCV中的绘图函数-OpenCV步步精深
OpenCV 中的绘图函数 画线 首先要为画的线创造出环境,就要生成一个空的黑底图像 img=np.zeros((512,512,3), np.uint8) 这是黑色的底,我们的画布,我把窗口名叫做i ...
- 转载 为什么print在Python 3中变成了函数?
转载自编程派http://codingpy.com/article/why-print-became-a-function-in-python-3/ 原作者:Brett Cannon 原文链接:htt ...
- cv2.cornerHarris()详解 python+OpenCV 中的 Harris 角点检测
参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014. ...
- 嵌入Python系列 | 调用Python模块中无参数函数
开发环境 Python版本:3.6.4 (32-bit) 编辑器:Visual Studio Code C++环境:Visual Studio 2013 需求说明 在用VS2013编写的Win32程序 ...
- python+opencv中最近出现的一些变化( OpenCV 官方的 Python tutorial目前好像还没有改过来?) 记一次全景图像的拼接
最近在学习过程中发现opencv有了很多变动, OpenCV 官方的 Python tutorial目前好像还没有改过来,导致大家在学习上面都出现了一些问题,现在做一个小小的罗列,希望对大家有用 做的 ...
- python列表中的pop函数
再python的列表中,有许多的内置方法,而在这里我主要向大家介绍一下pop函数. pop函数主要是用于删除列表中的数据.而其删除值时会返回删除的值.如果没有参数传入时, 则会默认认为删除列表的最后一 ...
- OpenCV中的新函数connectedComponentsWithStats使用
主要内容:对比新旧函数,用于过滤原始图像中轮廓分析后较小的区域,留下较大区域. 关键字 :connectedComponentsWithStats 在以前,常用的方法是"是先调用 cv ...
- python 类中的某个函数作为装饰器
在python的类中,制作一个装饰器的函数, class A: def wrapper(func): ###装饰器 def wrapped(self,*arg,**kwargs) ... return ...
- 5、opencv中的绘图函数
1.目标 a.学习使用 OpenCV 绘制不同几何图形 b. 你将会学习到这些函数: cv2.line(), cv2.circle(), cv2.rectangle(),cv2.ellipse(),c ...
随机推荐
- 使用WSAIoctl获取AcceptEx函数指针 [转]
Winsock2的其他供应商不一定会实现AcceptEx函数.同样情况也包括的其他Microsoft的特定APIs如TransmitFile,GetAcceptExSockAddrs以及其他Micro ...
- UITableView设置Cell左滑多个按钮(编辑,删除,置顶等)
一.iOS7不支持cell多个按钮这个时候可以使用一个三方库JZTableViewRowAction,引用类扩展文件并实现其代理方法 JZTableViewRowAction下载地址:http://d ...
- 用VisualSVN Server创建版本库,以及TortoiseSVN的使用
介绍了VisualSVN Server和TortoiseSVN的下载,安装,汉化. SVN服务器搭建和使用(一) Subversion是优秀的版本控制工具,其具体的的优点和详细介绍,这里就不再多说. ...
- Git 分支管理 解决冲突
人生不如意之事十之八九,合并分支往往也不是一帆风顺的. 准备新的feature1分支,继续我们的新分支开发: $ git checkout -b feature1 -- 在feature1分支上修改r ...
- 小议IT公司的组织架构
IT公司的组织结构还是很相似的,常见的部门也不多.我简单地总结了下,分享给各位.每个公司都有自己独特的组织架构,本文仅供参考.很多部门和职位的职责和权力,我也不甚了解.简单地写写,有兴趣的同学可以补充 ...
- svn提交的时候提示No space left on device
看到这个错误,第一个反应是磁盘空间满了:但 df 一看,每个分区的空间都还富余的很.从 munin 的监控图表上看 Filesystem usage 也很平稳,但下面的 Inode usage 就有问 ...
- iOS风格的弹出框(alert,prompt,confirm)
前两天,自己写了一个简单的插件,在移动端使用,不管是安卓手机还是iOS系统的手机,弹出框统一使用iOS风格的. 该弹出框是依赖于jQuery的,当然也可以将用jq写的几句代码转换为原生代码. 今天把代 ...
- Nacos深入浅出(四)
private void executeAsyncInvoke() { while (!queue.isEmpty()) { NotifySingleTask task = queue.poll(); ...
- Http请求数据解释
请求的数据里面包含三个部分内容 : 请求行 . 请求头 .请求体 请求行 POST /examples/servlets/servlet/RequestParamExample HTTP/1.1 PO ...
- SpringCloud多模块整理
1.项目架构 —— project 父项目 —— client 子项目(客户端) 对外暴露的接口 —————— pom.xml 子项目的pom文件 ...