刚刚做的时候一看:这不是个傻逼题吗hhhhh。。。。然后发现写完了过不了样例,仔细一看题:同构的算一种。

这可咋办啊?

其实很简单,设f[i] 为 以a[i] 结尾的上升子序列个数,我们考虑当前如果算到 i 了,那么我们需要查询 a[j] < a[i] 且 j < i 的所有 的 f[j] 的和。

为了避免重复计算,我们只需要保留每个权值的j最大的那个就行了,因为那个 j 肯定可以包含之前的所有答案。

所以我们边计算边维护即可。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=100005,ha=1000000007;
inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
int a[maxn],num[maxn],ky,n,f[maxn],ans,g[maxn],pre[maxn];
inline void update(int x,int y){ for(;x<=ky;x+=x&-x) f[x]=add(f[x],y);}
inline int query(int x){ int an=0; for(;x;x-=x&-x) an=add(an,f[x]); return an;}
int main(){
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout); scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",a+i),num[i]=a[i];
sort(num+1,num+n+1);
ky=unique(num+1,num+n+1)-num-1;
for(int i=1;i<=n;i++) a[i]=lower_bound(num+1,num+ky+1,a[i])-num; for(int i=1;i<=n;i++){
if(pre[a[i]]) update(a[i],ha-pre[a[i]]);
g[i]=add(query(a[i]-1),1),update(a[i],g[i]);
pre[a[i]]=g[i];
} for(int i=1;i<=ky;i++) if(pre[i]) ans=add(ans,pre[i]-1); printf("%d\n",ans);
return 0;
}

  

[TJOI2014] 上升子序列的更多相关文章

  1. bzoj5157: [Tjoi2014]上升子序列(树状数组LIS)

    5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不 ...

  2. 【bzoj5157】[Tjoi2014]上升子序列 树状数组

    题目描述 求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果. 题解 树状数组 傻逼题,离散化后直接使用树状数组统计即可.由于要求本质不同,因此一个数要减去它前一次出现时的贡献( ...

  3. 【[TJOI2014]上升子序列】

    这本质上是一个\(dp\) 如果没有"两个上升子序列相同,那么只需要计算一次"这一个性质,那么就很好做了,我们用\(dp[i]\)表示以\(i\)结尾的上升子序列个数,那么就有\( ...

  4. BZOJ5157 & 洛谷3970:[TJOI2014]上升子序列——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5157 https://www.luogu.org/problemnew/show/P3970 给定 ...

  5. P3970 [TJOI2014]上升子序列

    传送门 DP 十分显然的DP,但是不好写 设 f[ i ] 表示以第 i 个数作结尾时的方案数,原序列为 a 如果不考虑相同的序列: 那么转移就是 Σ f[ j ] (0< j < i & ...

  6. BZOJ5157 [Tjoi2014]上升子序列 【树状数组】

    题目链接 BZOJ5157 题解 我们只需计算每个位置为开头产生的贡献大小,就相当于之后每个大于当前位置的位置产生的贡献 + 1之和 离散化后用树状数组维护即可 要注意去重,后面计算的包含之前的,记录 ...

  7. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  8. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  9. [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

随机推荐

  1. windows下git安装以及基本配置

    一.首先要下载git然后进行默认安装即可,然后查看系统环境变量是否添加     二.桌面右击鼠标,选择git bash 进入操作页面 git --version 检测是否安装成功   安装完成有配置一 ...

  2. Oracle 分析函数--Row_Number()

    row_number() over ([partition by col1] order by col2) ) as 别名 表示根据col1分组,在分组内部根据 col2排序 而这个“别名”的值就表示 ...

  3. ubuntu16.04中docker安装curl拒绝连接问题

    在Ubuntu16.04中安装docker ce,安装步骤按照官网说明https://docs.docker.com/engine/installation/linux/docker-ce/ubunt ...

  4. [转]核函数K(kernel function)

    1 核函数K(kernel function)定义 核函数K(kernel function)就是指K(x, y) = <f(x), f(y)>,其中x和y是n维的输入值,f(·) 是从n ...

  5. java io 流 输入输出 大牛经典总结

    在软件开发中,数据流和数据库操作占据了一个很重要的位置,所以,熟悉操作数据流和数据库,对于每一个开发者来说都是很重要的,今天就来总结一下I/O,数据库操作 一:从数据流开始 首先先有一个结构图看一下整 ...

  6. spring IOC注解方式详解

    本文分为三个部分:概述.使用注解进行属性注入.使用注解进行Bean的自动定义. 一,概述 注释配置相对于 XML 配置具有很多的优势: 它可以充分利用 Java 的反射机制获取类结构信息,这些信息可以 ...

  7. Behavior trees for AI: How they work

    http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php ...

  8. 在控制器“xxxx”上找不到与该请求匹配的操作

    Message:"找不到与请求 URI"http://localhost:8091/Api/CommonApi/SelectBind/GetBudCategoryListByCID ...

  9. 监视网络接口TCP状态信息数据有多种工具或命令。下面举例一些:

    nstat命令 nstat kernel ======= ss -s == netstat -i netstat -s ip -s link sar -n DEV 1

  10. Python脚本获取Linux系统信息

    # -*- coding:utf-8 -*- import os import subprocess import re import hashlib #对字典取子集 def sub_dict(for ...