[BZOJ1047][HAOI2007]理想的正方形 二维单调队列
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047
我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素。然后扫描每一行,再次维护一个大小为$n$的单调队列,队中元素为当前列的队列中取出的最值。$O(n^2)$扫过去就可以了。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=<<;
int inline readint(){
int Num;char ch;
while((ch=getchar())<''||ch>'');Num=ch-'';
while((ch=getchar())>=''&&ch<='') Num=Num*+ch-'';
return Num;
}
int A,B,N;
int M[][];
int qmn1[][],qmn2[][],hmn[],tmn[];
int qmx1[][],qmx2[][],hmx[],tmx[];
int Qmn1[],Qmn2[],Hmn,Tmn;
int Qmx1[],Qmx2[],Hmx,Tmx;
int main(){
A=readint();
B=readint();
N=readint();
for(int i=;i<=A;i++)
for(int j=;j<=B;j++)
M[i][j]=readint();
for(int i=;i<=B;i++){
hmx[i]=hmn[i]=;
tmx[i]=tmn[i]=;
for(int j=;j<N;j++){
while(hmx[i]<=tmx[i]&&qmx1[i][tmx[i]]<=M[j][i]) tmx[i]--;
qmx1[i][++tmx[i]]=M[j][i];
qmx2[i][tmx[i]]=j;
while(hmn[i]<=tmn[i]&&qmn1[i][tmn[i]]>=M[j][i]) tmn[i]--;
qmn1[i][++tmn[i]]=M[j][i];
qmn2[i][tmn[i]]=j;
}
}
int ans=INF;
for(int i=N;i<=A;i++){
for(int j=;j<=B;j++){
while(hmx[j]<=tmx[j]&&qmx2[j][hmx[j]]+N<=i) hmx[j]++;
while(hmx[j]<=tmx[j]&&qmx1[j][tmx[j]]<=M[i][j]) tmx[j]--;
qmx1[j][++tmx[j]]=M[i][j];
qmx2[j][tmx[j]]=i;
while(hmn[j]<=tmn[j]&&qmn2[j][hmn[j]]+N<=i) hmn[j]++;
while(hmn[j]<=tmn[j]&&qmn1[j][tmn[j]]>=M[i][j]) tmn[j]--;
qmn1[j][++tmn[j]]=M[i][j];
qmn2[j][tmn[j]]=i;
}
Hmx=Hmn=;
Tmx=Tmn=;
for(int j=;j<N;j++){
while(Hmx<=Tmx&&Qmx1[Tmx]<=qmx1[j][hmx[j]]) Tmx--;
Qmx1[++Tmx]=qmx1[j][hmx[j]];
Qmx2[Tmx]=j;
while(Hmn<=Tmn&&Qmn1[Tmn]>=qmn1[j][hmn[j]]) Tmn--;
Qmn1[++Tmn]=qmn1[j][hmn[j]];
Qmn2[Tmn]=j;
}
for(int j=N;j<=B;j++){
while(Hmx<=Tmx&&Qmx2[Hmx]+N<=j) Hmx++;
while(Hmx<=Tmx&&Qmx1[Tmx]<=qmx1[j][hmx[j]]) Tmx--;
Qmx1[++Tmx]=qmx1[j][hmx[j]];
Qmx2[Tmx]=j;
while(Hmn<=Tmn&&Qmn2[Hmn]+N<=j) Hmn++;
while(Hmn<=Tmn&&Qmn1[Tmn]>=qmn1[j][hmn[j]]) Tmn--;
Qmn1[++Tmn]=qmn1[j][hmn[j]];
Qmn2[Tmn]=j;
ans=min(ans,Qmx1[Hmx]-Qmn1[Hmn]);
}
}
printf("%d\n",ans);
return ;
}
[BZOJ1047][HAOI2007]理想的正方形 二维单调队列的更多相关文章
- bzoj1047 [HAOI2007]理想的正方形——二维单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...
- BZOJ1047[HAOI2007]理想的正方形——二维ST表
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- bzoj1047-理想的正方形(二维单调队列)
题意: 给一个矩阵,给出行列和每个数,再给出一个N,求出所有N*N的子矩阵中最大值最小值之差的最小值解析: 暴力枚举肯定不行,这题可以用二维单调队列做,把同一行的连续N个点缩成一个点保存最大最小值预处 ...
- 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列
题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...
- 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- [HAOI2007]理想的正方形 st表 || 单调队列
~~~题面~~~ 题解: 因为数据范围不大,而且题目要求的是正方形,所以这道题有2种解法. 1,st表. 这种解法暴力好写好理解,但是较慢.我们设st[i][j][k]表示以(i, j)为左端点,向下 ...
- P2216 [HAOI2007]理想的正方形(dp+单调队列优化)
题目链接:传送门 题目: 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表 ...
- 【二维单调队列】BZOJ1047-[HAOI2007]理想的正方形
[题目大意] 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. [思路] 裸的二维单调队列.二维单调队列的思路其实很简单: (1)对于每 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
随机推荐
- BZOJ_3123_[Sdoi2013]森林_主席树+启发式合并
BZOJ_3123_[Sdoi2013]森林_主席树+启发式合并 Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20 ...
- 「NOIP2014」「Codevs3728」 联合权值(乱搞
3728 联合权值 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 输入描述 Input Description 输出描述 Ou ...
- [ZJOI 2012] 网络
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2816 [算法] 对每种颜色的边建一棵LCT , 维护联通性即可 时间复杂度 : O( ...
- CSS:CSS cursor 属性
ylbtech-CSS:CSS cursor 属性 1.返回顶部 1. 实例 一些不同的光标: span.crosshair {cursor:crosshair;} span.help {cursor ...
- 《Linux内核修炼之道》精华分享与讨论(5)——Kernel地图:Kconfig与Makefile
转自:http://blog.csdn.net/fudan_abc/article/details/5340408 Makefile不是Make Love 从前在学校,混了四年,没有学到任何东西,每天 ...
- 指定网卡进行ping操作
windows系统下:ping -S 查看当前网卡情况 ipconfig 有两块网卡,ip分别为 192.168.12.83.192.168.1.126 使用不同网卡分别ping百度 网卡1: pi ...
- c++友元函数友元类
友元函数和友元类的需要: 类具有封装和信息隐藏的特性.只有类的成员函数才能访问类的私有成员,程序中的其他函数是无法访问私有成员的.非成员函数可以访问类中的公有成员,但是如果将数据成员都定义为公有的,这 ...
- 前端基础 之css
css 介绍 css(层叠样式表)定义如何显示html 元素 当浏览器读到一个样式表, 他就会按照这个表对文档进行格式化(渲染) css语法 css实例 css 注释 注释是代码之母 /* 这是注释* ...
- 天天连萌UE分析
1.开始游戏消耗心,有消耗动画,[可以使用到副本次数上] 2.关卡结束,是个可爱的动画,[可以是潇洒的动画,一个吹箫的潇洒老翁或者帅哥] 3.点击爽快感:点击配对成功飘字及时且快速,[字体漂亮--潇洒 ...
- Unresolved function or method require()
1. 这是在JavaScript配置中没有node.js,去设置中配置就行了,方法如下: setting -> Languages&Frameworks -> Javascript ...