bzoj 1185 [HNOI2007]最小矩形覆盖 凸包+旋转卡壳
题目大意
用最小矩形覆盖平面上所有的点
分析
有一结论:最小矩形中有一条边在凸包的边上,不然可以旋转一个角度让面积变小
简略证明
我们逆时针枚举一条边
用旋转卡壳维护此时最左,最右,最上的点
注意
注意凸包后点数不再是n
吐槽
凸包后点数是n,bzoj上就过了???
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef double db;
const db eps=1e-9;
const int M=50007;
int n;
struct pt{
db x,y;
pt(db _x=0.0,db _y=0.0){x=_x; y=_y;}
}p[M],s[M]; int tot;
bool eq(db x,db y){return fabs(y-x)<=eps;}
bool le(db x,db y){return eq(x,y)||x<y;}
pt operator -(pt x,pt y){return pt(x.x-y.x,x.y-y.y);}
pt operator +(pt x,pt y){return pt(x.x+y.x,x.y+y.y);}
bool operator <(pt x,pt y){return (x.y!=y.y)?(x.y<y.y):(x.x<y.x);}
bool operator ==(pt x,pt y){return eq(x.x,y.x)&&eq(x.y,y.y);};
pt operator *(pt x,db d){return pt(x.x*d,x.y*d);}
pt operator /(pt x,db d){return pt(x.x/d,x.y/d);}
db dot(pt x,pt y){
return x.x*y.x+x.y*y.y;
}
db cross(pt x,pt y){
return x.x*y.y-x.y*y.x;
}
db length(pt x){
return sqrt(dot(x,x));
}
db area(pt x,pt y,pt z){
return cross(y-x,z-x);
}
db shadow(pt x,pt y,pt to){
return dot(y-x,to-x)/length(to-x);
}
pt lf_90(pt x){
return pt(-x.y,x.x);
}
bool cmp(pt x,pt y){
db tp=area(p[1],x,y);
if(eq(tp,0)) return length(x-p[1])<length(y-p[1]);
return tp>0;
}
void convex(){
int i,ii=1;
for(i=2;i<=n;i++) if(p[i]<p[ii]) ii=i;
swap(p[1],p[ii]);
sort(p+2,p+n+1,cmp);
s[tot=1]=p[1];
for(i=2;i<=n;i++){
while(tot>1&&le(area(s[tot-1],s[tot],p[i]),0)) tot--;
s[++tot]=p[i];
}
}
int main(){
int i,p1,p2,p3;
db tp1,tp2,tp3,tp4,ans;
pt a[5],tp;
scanf("%d",&n);
for(i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
convex();
s[0]=s[tot];//要算每一条边,加上tot-0的
ans=1e32;
p1=1,p2=1,p3=1;
for(i=0;i<tot;i++){
if(s[i]==s[i+1]) continue;
while(le(area(s[i],s[i+1],s[p3]),area(s[i],s[i+1],s[p3%tot+1]))) p3=p3%tot+1;
if(i==0) p1=p3;//第一次找卡壳特例
while(le(shadow(s[i],s[p1%tot+1],s[i+1]),shadow(s[i],s[p1],s[i+1]))) p1=p1%tot+1;
while(le(shadow(s[i+1],s[p2%tot+1],s[i]),shadow(s[i+1],s[p2],s[i]))) p2=p2%tot+1;
tp1=length(s[i+1]-s[i]);
tp2=area(s[i],s[i+1],s[p3])/tp1;
tp3=fabs(shadow(s[i],s[p1],s[i+1]));
tp4=fabs(shadow(s[i+1],s[p2],s[i]));
if(le((tp1+tp3+tp4)*tp2,ans)){
ans=(tp1+tp3+tp4)*tp2;
tp=s[i+1]-s[i];
a[1]=s[i]-tp*(tp3/tp1);
a[2]=s[i+1]+tp*(tp4/tp1);
tp=lf_90(tp);
a[3]=a[2]+tp*(tp2/tp1);
a[4]=a[1]+tp*(tp2/tp1);
}
}
printf("%.5lf\n",ans+eps);
int ii=1;
for(i=2;i<=4;i++) if(a[i]<a[ii]) ii=i;
printf("%.5lf %.5lf\n",a[ii].x+eps,a[ii].y+eps);
for(i=ii%4+1;i!=ii;i=i%4+1) printf("%.5lf %.5lf\n",a[i].x+eps,a[i].y+eps);
return 0;
}
bzoj 1185 [HNOI2007]最小矩形覆盖 凸包+旋转卡壳的更多相关文章
- [BZOJ1185][HNOI2007]最小矩形覆盖-[凸包+旋转卡壳]
Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include&l ...
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1435 Solve ...
- BZOJ:1185: [HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...
- BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)
BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...
- BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 题意: 给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积. 题解: 先找出凸 ...
- bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子
来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...
- ●BZOJ 1185 [HNOI2007]最小矩形覆盖
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解: 计算几何,凸包,旋转卡壳 结论:矩形的某一条边在凸包的一条边所在的直线上. ( ...
随机推荐
- [Codeforces Round #250]小朋友和二叉树
题目描述: bzoj luogu 题解: 生成函数ntt. 显然这种二叉树应该暴力薅掉树根然后分裂成两棵子树. 所以$f(x)= \sum_{i \in c} \sum _{j=0}^{x-c} f( ...
- PHP网站实现地址URL重定向
网站建设中,通常会用到网站地址URL的重定向,这样的好处是有利于你网站的SEO优化,也就是让你的网站实现伪静态,下面简单介绍一下实现的两种方法: 1.在Apache配置文件中设置重定向 首先找到Apa ...
- 双击内容变input框可编辑,失去焦点后修改的数据异步提交
<html> <head> <meta charset="utf8"> <script src="https://cdn.boo ...
- Python基础-函数参数
Python基础-函数参数 写在前面 如非特别说明,下文均基于Python3 摘要 本文详细介绍了函数的各种形参类型,包括位置参数,默认参数值,关键字参数,任意参数列表,强制关键字参数:也介绍了调用函 ...
- matplotlib 设置图形大小时 figsize 与 dpi 的关系
matplotlib 中设置图形大小的语句如下: fig = plt.figure(figsize=(a, b), dpi=dpi) 其中: figsize 设置图形的大小,a 为图形的宽, b 为图 ...
- leetcode-23-DynamicProgramming-1
357. Count Numbers with Unique Digits 解题思路: 用arr[i]存放长度为i时,各位互不相同的数字的个数,所以arr[1]=10,arr[2]=9*9.(第一位要 ...
- eclipse使用技巧的网站收集——转载(二)
写代码离不开文本编辑器,看代码也离不开,iar和keil编辑和阅读简直一般般了,因此使用eclipse可以看看代码,提高效率.网上有几个博客的文章,这里收集一下,以备忘. 以下文章转载自:http:/ ...
- 线段树:CDOJ1592-An easy problem B (线段树的区间合并)
An easy problem B Time Limit: 2000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...
- hdu 6333
Problem Description There are n apples on a tree, numbered from 1 to n.Count the number of ways to p ...
- JavaSE——final修饰符
一.final 修饰变量,被final修饰的变量在被赋初始值之后,不能对它重新赋值 修饰实例变量,必须显示指定初始值,可以在三个位置指定初始值: 1.定义final实例变量时指定初始值 ...