九度OJ 1005:Graduate Admission (排序)
时间限制:1 秒
内存限制:32 兆
特殊判题:否
提交:5646
解决:1632
- 题目描述:
-
It is said that in 2011, there are about 100 graduate schools ready to proceed over 40,000 applications in Zhejiang Province. It would help a lot if you could write a program to automate the admission procedure.
Each applicant will have to provide two grades: the national entrance exam grade GE, and the interview grade GI. The final grade of an applicant is (GE + GI) / 2. The admission rules are:• The applicants are ranked according to their final grades, and will be admitted one by one from the top of the rank list.
• If there is a tied final grade, the applicants will be ranked according to their national entrance exam grade GE. If still tied, their ranks must be the same.
• Each applicant may have K choices and the admission will be done according to his/her choices: if according to the rank list, it is one's turn to be admitted; and if the quota of one's most preferred shcool is not exceeded, then one will be admitted to
this school, or one's other choices will be considered one by one in order. If one gets rejected by all of preferred schools, then this unfortunate applicant will be rejected.
• If there is a tied rank, and if the corresponding applicants are applying to the same school, then that school must admit all the applicants with the same rank, even if its quota will be exceeded.
- 输入:
-
Each input file may contain more than one test case.
Each case starts with a line containing three positive integers: N (≤40,000), the total number of applicants; M (≤100), the total number of graduate schools; and K (≤5), the number of choices an applicant may have.
In the next line, separated by a space, there are M positive integers. The i-th integer is the quota of the i-th graduate school respectively.
Then N lines follow, each contains 2+K integers separated by a space. The first 2 integers are the applicant's GE and GI, respectively. The next K integers represent the preferred schools. For the sake of simplicity, we assume that the schools are numbered
from 0 to M-1, and the applicants are numbered from 0 to N-1.
- 输出:
-
For each test case you should output the admission results for all the graduate schools. The results of each school must occupy a line, which contains the applicants' numbers that school admits. The numbers must be in increasing
order and be separated by a space. There must be no extra space at the end of each line. If no applicant is admitted by a school, you must output an empty line correspondingly.
- 样例输入:
-
11 6 3
2 1 2 2 2 3
100 100 0 1 2
60 60 2 3 5
100 90 0 3 4
90 100 1 2 0
90 90 5 1 3
80 90 1 0 2
80 80 0 1 2
80 80 0 1 2
80 70 1 3 2
70 80 1 2 3
100 100 0 2 4
- 样例输出:
-
0 10
3
5 6 7
2 8 1 4
思路:
本题考查的是排序,其中有很多坑的地方,我在做的过程中出了很多错误,看论坛参考别人意见才一一发现解决。
其中最可能坑的地方是:先给考生排名后,根据考生排名从名次高到名次低逐个录取,考生第一志愿没录取直接看第二志愿,跟我们高考不一样的。
另外还需要注意的:当学校没有已经没有名额时,若你与所报的学校已经录取的最低分相等且为同等志愿,你就会破格被录取。。。(也就是为什么样例中的学生7会被学校2录取)
数据结构用结构体比较好,用分开的数组就太乱了。C语言用qsort排序,C++用sort。
代码:
#include <stdio.h>
#include <stdlib.h> #define N 40000
#define M 100
#define K 5 typedef struct student {
int id;
int ge;
int gi;
int sch[K];
} Stu; typedef struct school {
int quota;
int num;
int ge;
int gi;
int stuid[N];
} Sch; int n, m, k;
Stu stu[N];
Sch sch[M]; int cmpGrade(const void *a, const void *b)
{
Stu *x = (Stu *)a;
Stu *y = (Stu *)b;
if (x->ge + x->gi != y->ge + y->gi)
return (y->ge + y->gi) - (x->ge + x->gi);
else
return y->ge - x->ge;
} int cmpId(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
} void printSch(int i)
{
int j;
int num = sch[i].num;
for (j=0; j<num-1; j++)
printf("%d ", sch[i].stuid[j]);
if (num > 0)
printf("%d\n", sch[i].stuid[j]);
else
printf("\n");
} int main(void)
{
int i, j; while (scanf("%d%d%d", &n, &m, &k) != EOF)
{
for (i=0; i<m; i++)
{
scanf("%d", &sch[i].quota);
sch[i].num = 0;
}
for (i=0; i<n; i++)
{
scanf("%d%d", &stu[i].ge, &stu[i].gi);
stu[i].id = i;
for (j=0; j<k; j++)
{
scanf("%d", &(stu[i].sch[j]));
}
}
qsort(stu, n, sizeof(stu[0]), cmpGrade); for (i=0; i<n; i++)
{
for (j=0; j<k; j++)
{
int schid = stu[i].sch[j];
int num = sch[schid].num;
if ( (num < sch[schid].quota) || ( (num >= sch[schid].quota)
&& (stu[i].ge == sch[schid].ge)
&& (stu[i].gi == sch[schid].gi) ) )
{
sch[schid].stuid[num] = stu[i].id;
sch[schid].ge = stu[i].ge;
sch[schid].gi = stu[i].gi;
sch[schid].num ++;
//printf("schid=%d, num=%d\n", schid, num);
break;
}
}
} for (i=0; i<m; i++)
{
qsort(sch[i].stuid, sch[i].num, sizeof(int), cmpId);
printSch(i);
}
} return 0;
}
/**************************************************************
Problem: 1005
User: liangrx06
Language: C
Result: Accepted
Time:0 ms
Memory:17792 kb
****************************************************************/
九度OJ 1005:Graduate Admission (排序)的更多相关文章
- 九度oj 1005
题目1005:Graduate Admission 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6182 解决:1791 题目描述: It ...
- 九度OJ 1349 数字在排序数组中出现的次数 -- 二分查找
题目地址:http://ac.jobdu.com/problem.php?pid=1349 题目描述: 统计一个数字在排序数组中出现的次数. 输入: 每个测试案例包括两行: 第一行有1个整数n,表示数 ...
- 九度OJ 1196:成绩排序 (排序)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4339 解决:1476 题目描述: 用一维数组存储学号和成绩,然后,按成绩排序输出. 输入: 输入第一行包括一个整数N(1<=N< ...
- 九度OJ 1185:特殊排序 (排序)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:15588 解决:3592 题目描述: 输入一系列整数,将其中最大的数挑出,并将剩下的数进行排序. 输入: 输入第一行包括1个整数N,1< ...
- 九度OJ 1066:字符串排序 (排序)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5632 解决:2299 题目描述: 输入一个长度不超过20的字符串,对所输入的字符串,按照ASCII码的大小从小到大进行排序,请输出排序后的 ...
- 九度OJ 1061:成绩排序 (排序)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:17158 解决:4798 题目描述: 有N个学生的数据,将学生数据按成绩高低排序,如果成绩相同则按姓名字符的字母序排序,如果姓名的字母序也相 ...
- 九度OJ 1023:EXCEL排序 (排序)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:14605 解决:3307 题目描述: Excel可以对一组纪录按任意指定列排序.现请你编写程序实现类似功能. 对每个测试用例 ...
- 九度OJ 1135:字符串排序 (排序)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1559 解决:807 题目描述: 先输入你要输入的字符串的个数.然后换行输入该组字符串.每个字符串以回车结束,每个字符串少于一百个字符. 如 ...
- 九度OJ 1130:日志排序 (排序)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1265 解决:303 题目描述: 有一个网络日志,记录了网络中计算任务的执行情况,每个计算任务对应一条如下形式的日志记录: "hs ...
随机推荐
- Codeforces Round #451 (Div. 2) B. Proper Nutrition【枚举/扩展欧几里得/给你n问有没有两个非负整数x,y满足x·a + y·b = n】
B. Proper Nutrition time limit per test 1 second memory limit per test 256 megabytes input standard ...
- 10.1综合强化刷题 Day1 afternoon
一道图论好题(graph) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图, ...
- Tiny4412 支持 adb reboot-bootloader
硬件版本: Tiny4412ADK + S700 4GB u-boot 版本: u-boot-2010-12 linux版本: Linux-3.0.8 版本一 支持 adb re ...
- mysql数据对象
学习目标: 了解掌握常见的几种数据库对象 学会如何创建具体的数据对象 mysql 常见的数据对象有哪些: DataBase/Schema Table Index View/Trigger/ ...
- python GIL
https://www.cnblogs.com/MnCu8261/p/6357633.html 全局解释器锁,同一时间只有一个线程获得GIL,
- 2017.2.28 activiti实战--第六章--任务表单(一)动态表单
学习资料:<Activiti实战> 第六章 任务表单(一)动态表单 内容概览:本章要完成一个OA(协同办公系统)的请假流程的设计,从实用的角度,讲解如何将activiti与业务紧密相连. ...
- 24. Spring Boot环境变量读取和属性对象的绑定【从零开始学Spring Boot】
转:http://blog.csdn.net/linxingliang/article/details/52069509 凡是被spring管理的类,实现接口EnvironmentAware 重写方法 ...
- PS中混合模式是什么意思?
PS中图层混合模式中的溶解,变暗,正片叠底,颜色加深,线性加深,叠加,柔光,亮光,强光,线性光,点光,实色混合,差值,排除,色相,饱和度,颜色,亮度各是什么原理? Normal 正常模式,也是 ...
- UNP学习笔记(第六章 I/O复用)
I/O模型 首先我们将查看UNIX下可用的5种I/O模型的基本区别: 1.阻塞式I/O 2.非阻塞式I/O 3.I/O复用(select和poll) 4.信号驱动式I/O(SIGIO) 5.异步I/O ...
- 【Python】随机漫步
创建Randomwalk()类 我们将使用Python来生成随机漫步数据,再使用matplotlib以引入瞩目的方式将这些数据呈现出来 首先创建类Randomwalk() from random im ...