[ZJOI2007]棋盘制作
                                          时间限制: 20 Sec 内存限制: 162 MB
【题目描述】
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源
于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,
正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定
将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种
颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找
一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他
希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全
国信息学竞赛的你,你能帮助他么?
【输入】
第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形
纸片的颜色(0表示白色,1表示黑色)。
【输出】
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋
盘的面积(注意正方形和矩形是可以相交或者包含的)。
【样例输入】
3 3
1 0 1
0 1 0
1 0 0
【样例输出】
4
6
【提示】
N, M ≤ 2000

分析:

我们发现,如果按题目意思直接按照黑白交替原则做很难解决,但如果转变思路,考虑第一行,我们对2,4,6,8...位置取反(0变1,1变0),这时如果奇数位置上的数与偶数位置上的数字全部相等说明实际情况下01是交错出现的,就是符合要求的棋盘的一行,对于第二行,我们对奇数位置取反,以类似方法操作,以此类推。奇数行偶数列取反,偶数行奇数列取反(其实奇奇和偶偶也行),这时,如果平面上一个矩形包含元素满足全部为0或1,它就是一个符合条件的棋盘。于是转化成了最大子矩阵问题,以0作为障碍求一次,以1作为障碍求一次,最大的矩形即为答案。

最大正方形其实差不多,所有符合条件正方形必然包含在矩形中,只要当前矩形最小边平方就是当前正方形面积的值了。

代码:

program chess;
var
a,maxl,minr,h,l,r:array[..,..]of longint;
n,i,m,j,c,ans1,ans2:longint;
function max(x,y:longint):longint;
begin
if x>y then max:=x else max:=y;
end;
function min(x,y:longint):longint;
begin
if x<y then min:=x else min:=y;
end;
procedure work(c:longint);
var i,j,s:longint;
begin
fillchar(h,sizeof(h),); fillchar(r,sizeof(r),); fillchar(l,sizeof(l),);
for i:= to m+ do begin a[,i]:=c; a[n+,i]:=c; end;
for i:= to n do
begin
maxl[i,]:=; minr[i,m+]:=m+;
for j:= to m do
if a[i,j]=c then maxl[i,j]:=j else maxl[i,j]:=maxl[i,j-];
for j:=m downto do
if a[i,j]=c then minr[i,j]:=j else minr[i,j]:=minr[i,j+];
end;
for i:= to n+ do
begin
for j:= to m do
if a[i-,j]=c then
begin
h[i,j]:=; l[i,j]:=; r[i,j]:=m+;
end else
begin
h[i,j]:=h[i-,j]+;
l[i,j]:=max(l[i-,j],maxl[i-,j]);
r[i,j]:=min(r[i-,j],minr[i-,j]);
s:=(r[i,j]-l[i,j]-)*h[i,j];
if s>ans2 then ans2:=s;
s:=sqr(min(r[i,j]-l[i,j]-,h[i,j]));
if s>ans1 then ans1:=s;
end;
end;
end; begin
readln(n,m);
for i:= to n do begin
for j:= to m do
begin
read(a[i,j]);
if (i mod =)and(j mod =) then a[i,j]:=-a[i,j];
if (i mod =)and(j mod =) then a[i,j]:=-a[i,j];
end; readln;
end;
work(); work();
writeln(ans1); writeln(ans2);
end.

BZOJ 1057:[ZJOI2007]棋盘制作(最大01子矩阵+奇偶性)的更多相关文章

  1. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  2. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  3. bzoj 1057: [ZJOI2007]棋盘制作 单调栈

    题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 1019[Submit] ...

  4. 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作

    题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...

  5. BZOJ 1057: [ZJOI2007]棋盘制作

    Decsription 给你一个矩阵,求最大了 01相间 的矩阵. Sol DP+悬线法. 这是一个论文啊 <浅谈用极大化思想解决最大子矩形问题>--王知昆. 枚举每一根悬线,记录最左/右 ...

  6. 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...

  7. 1057: [ZJOI2007]棋盘制作

    1057: [ZJOI2007]棋盘制作 https://www.lydsy.com/JudgeOnline/problem.php?id=1057 分析: 首先对于(i+j)&1的位置0-& ...

  8. 【BZOJ】1057: [ZJOI2007]棋盘制作(单调栈)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1057 同某一题差不多?记不清是哪题了.. 就是每一行进行单调栈维护递增的高度,在进栈和出栈维护一下长 ...

  9. 1057: [ZJOI2007]棋盘制作 - BZOJ

    Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴 ...

  10. 【BZOJ】1057 [ZJOI2007]棋盘制作(悬线法)

    题目 传送门:QWQ 分析 先把题目给出的矩阵变换一下,如果$ a[i][j] $中$ i+j \mod 2 = 1 $那么就对$ a[i][j] $取一下反. 接着就是求原图中最大的0.1子矩阵 详 ...

随机推荐

  1. Uploadify 3.2 参数属性、事件、方法函数详解以及配置

    一.属性 属性名称 默认值 说明 auto true 设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传 . buttonClass ” 按钮样式 buttonCursor ‘ ...

  2. Android(java)学习笔记88:BaseAdapter适配器重写之getView()

    1. BaseAdapter适配器重写 之getView(): (1)View getview(int position, View convertview, ViewGroup parent ) 第 ...

  3. kubernetes-存储卷(十二)

    为了保证数据的持久性,必须保证数据在外部存储在docker容器中,为了实现数据的持久性存储,在宿主机和容器内做映射,可以保证在容器的生命周期结束,数据依旧可以实现持久性存储.但是在k8s中,由于pod ...

  4. bootstrap table加载数据

    //html <table id="dailyDevTable"></table> //js $(function () { initTable(); }) ...

  5. 关于小程序button控件上下边框的显示和隐藏问题

    问题: 小程序的button控件上下有一条淡灰色的边框,在空件上加上了样式 border:(none/0); 都没办法让button上下的的边框隐藏: 代码如下 <button class=&q ...

  6. Oracle数据库学习(一)

    Oracle数据库由甲骨文公司开发,是基于对象的关系型数据库:下面是简单的学习数据库操作等知识. 1.SQL单表查询(设一个表名为tab) (1)查询所有记录 select * from tab(一般 ...

  7. grep与正则表达式使用

    grep简介 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来.通常grep有三种版本grep.egrep(等同于grep -E)和fgrep.egrep为扩展的g ...

  8. 第2 章Python 语言基础

    必背必记 1.转义字符   Python 中的字符串还支持转义字符.所谓转义字符是指使用反斜杠“\”对一些特殊字符进行转义. \ 续行符 \n 换行符 \0 空 \t 水平制表符,用于横向跳到下一制表 ...

  9. 5-1 json模块

    1.json.loads(json_str)  把字符串(json串)转成字典 import json # 解析json的 json_str = ''' {"name":" ...

  10. day09-函数讲解

    1.如何定义一个函数 s = '华为加油a' def s_len(): i = 0 for k in s: i += 1 print(i) s_len() 这个函数的功能就是输出字符串的长度.但是他只 ...