cs229_part6
part 6
接下来就是无监督学习算法了。
k均值聚类
问题背景
样本集描述:
\[
x\in D, x\in R^n
\]
之前的有监督学习问题中,所有的x都有对应的y。但是如果我们的x没有对应的y。但是我们还是希望对x进行分类那应该如何做呢。
迭代过程
最简单的想法就是圈地。对每个类别圈一定的样本。即类似于构造一个星团的过程,我们希望星团有一个中心,属于这个星团的星星离这个星团越近越好。不属于这个星团的星星离这个中心越远越好。但是这个中心的选取也是未知的,于是我们给出一个迭代算法:
- 任意选取k个聚类中心\(\mu_k\)
- 计算样本的类型\[c ^ { ( i ) } : = \arg \min _ { j } \| x ^ { ( i ) } - \mu _ { j } \| | ^ { 2}\]
- 重新计算各个聚类中心 \[\mu _ { j } : = \frac { \sum _ { i = 1} ^ { m } 1\left\{ c ^ { ( i ) } = j \right\} x ^ { ( i ) } } { \sum _ { i = 1} ^ { m } 1\left\{ c ^ { ( i ) } = j \right\} }\]
- 回到2直到收敛,即聚类中心重新计算变得不大时
迭代过程如下图所示

这里收敛性的证明请翻阅讲义。
EM算法
问题背景
再讲EM之前先回顾一下之前我们求分布参数用的最大似然。比如一个班级分为男生和女生,我们假设男生和女生的身高服从正态分布。那么正态分布的参数就可以用最大似然法来求解。但是如果把男生和女生混起来,我们怎么求这个分布呢。或者我们说我们手上有一个班级的身高数据,但是不知道是男生还是女生的。我们想要对其分别求出男生和女生的身高的正态分布参数。
迭代过程
那么直观理解EM算法的话,EM算法就是一个存在隐变量的最大似然法。所谓的隐变量就是对于x我们所不知道的那个类别y。于是EM算法做的事情其实就是两步:
- 拿出一个人的身高数据,先猜测它到底是男是女
- 根据猜测的结果求分布的参数
公式化描述的话就是这么个过程:
这是我们最初求参数用的对数似然:
\[
\theta ^ { * } = \arg \max _ { \theta } \ln P ( X | \theta )
\]
因为存在隐变量z:
\[
\theta ^ { * }= \arg \max _ { \theta } \ln\sum _ { z } P ( X ,z | \theta )
\]
对数似然即:
\[
\left.\begin{aligned} L ( \theta ) & = \ln P ( X | \theta ) \\ & = \ln \sum _ { z } P ( X ,z | \theta ) \end{aligned} \right.
\]
因为z不好求,稍微做一下处理:
\[
L(\theta)= \ln \sum _ { z } P ( X ,z | \theta ) \frac { Q ( z ) } { Q ( z ) }
\]
利用log函数凹函数的性质和琴声不等式得到下界:
\[
L(\theta)\geq \sum _ { z } Q ( z ) \ln \frac { P ( X ,z | \theta ) } { Q ( z ) }
\]
那么我们EM算法就是:
- E步。先似然最大化求z的分布Q(z):\[Q _ { n } ( z ) = \arg \max _ { \mathcal { Q } ( z ) } \sum _ { z } Q ( z ) \ln \frac { P \left( X ,z | \theta _ { n } \right) } { Q ( z ) }\] 利用拉格朗日算子可以得到,详细推导请翻阅参考:\[\Rightarrow Q _ { n } ( z ) = P \left( z | X ,\theta _ { n } \right)\] 这样我们就得到了隐变量的估计。
- M步。既然我们已经得到了类别,再最大似然一次\[\left.\begin{aligned} \theta ^ { n + 1} & = \arg \max _ { \theta } l ( \theta ) \\ & = \arg \max _ { \theta } \sum _ { z } P \left( z | X ,\theta ^ { n } \right) \ln \frac { P ( X ,z | \theta ) } { P \left( z | X ,\theta ^ { n } \right) } \\ & = \arg \max _ { \theta } \sum _ { z } P \left( z | X ,\theta ^ { n } \right) \ln P ( X ,z | \theta ) ) \\ & = \arg \max _ { \theta } E _ { z | X ,\theta ^ { n } } ( \ln P ( X ,z | \theta ) ) \end{aligned} \right.\] 这样就得到了其他参数的估计。
高斯混合模型
问题背景
之前生成式的分类算法里面讲到了高斯辨别分析。我们构造了一个高斯分布去拟合不同的类别。那么这个高斯混合模型也是差不多的。只是多了一个隐变量z,这个z又可以通过EM算法来进行求解。
迭代过程
和高斯判别分析一样我们的对数似然是:
\[
\ell ( \phi ,\mu ,\Sigma ) = \sum _ { i = 1} ^ { m } \log p \left( x ^ { ( i ) } ; \phi ,\mu ,\Sigma \right)
\]
注意y的分布是一个多项式分布而不是伯努利分布,然后引入隐变量z:
\[
\ell ( \phi ,\mu ,\Sigma ) = \sum _ { i = 1} ^ { m } \log \sum _ { z ^ { ( i ) } = 1} p \left( x ^ { ( i ) } | z ^ { ( i ) } ; \mu ,\Sigma \right) p \left( z ^ { ( i ) } ; \phi \right)
\]
假设我们知道z的分布,那么似然函数可以化简成:
\[
\ell ( \phi ,\mu ,\Sigma ) = \sum _ { i = 1} ^ { m } \log p \left( x ^ { ( i ) } | z ^ { ( i ) } ; \mu ,\Sigma \right) + \log p \left( z ^ { ( i ) } ; \phi \right)
\]
对参数分别求导就得到了
\[
\phi _ { j } = \frac { 1} { m } \sum _ { i = 1} ^ { m } 1\left\{ z ^ { ( i ) } = j \right\}
\]
\[
\mu _ { j } = \frac { \sum _ { i = 1} ^ { m } 1\left\{ z ^ { ( i ) } = j \right\} x ^ { ( i ) } } { \sum _ { i = 1} ^ { m } 1\left\{ z ^ { ( i ) } = j \right\} }
\]
\[
\Sigma _ { j } = \frac { \sum _ { i = 1} ^ { m } 1\left\{ z ^ { ( i ) } = j \right\} \left( x ^ { ( i ) } - \mu _ { j } \right) \left( x ^ { ( i ) } - \mu _ { j } \right) ^ { T } } { \sum _ { i = 1} ^ { m } 1\left\{ z ^ { ( i ) } = j \right\} }
\]
到目前为止。我们的求解过程还是和之前的高斯判别分析一样。但是这里有一个问题就是实际上隐类别z是不知道的。所以我们可以用E步进行估计。
EM算法如下:
- E步估计类别\[w _ { j } ^ { ( \text{i} ) } : = p \left( Z ^ { ( i ) } = j | x ^ { ( i ) } ; \Phi ,\mu ,\Sigma \right)\]利用贝叶斯可以得到\[p \left( z ^ { ( i ) } = j | x ^ { ( i ) } ; \phi ,\mu ,\Sigma \right) = \frac { p \left( x ^ { ( i ) } | z ^ { ( i ) } = j ; \mu ,\Sigma \right) p \left( z ^ { ( i ) } = j ; \phi \right) } { \sum _ { l = 1} ^ { k } p \left( x ^ { ( i ) } | z ^ { ( i ) } = l ; \mu ,\Sigma \right) p \left( z ^ { ( i ) } = l ; \phi \right) }\]
- M步更新参数\[\phi _ { j } : = \frac { 1} { m } \sum _ { i = 1} ^ { m } w _ { j } ^ { ( i ) }\] \[\mu _ { j } : = \frac { \sum _ { i = 1} ^ { m } w _ { j } ^ { ( i ) } x ^ { ( i ) } } { \sum _ { i = 1} ^ { m } w _ { j } ^ { ( i ) } }\] \[\Sigma _ { j } \quad = \frac { \sum _ { i = 1} ^ { m } w _ { j } ^ { ( i ) } \left( x ^ { ( i ) } - \mu _ { j } \right) \left( x ^ { ( i ) } - \mu _ { j } \right) ^ { T } } { \sum _ { i = 1} ^ { m } w _ { j } ^ { ( i ) } }\]
参考
cs229_part6的更多相关文章
- cs229课程索引
重要说明 这个系列是以cs229为参考,梳理下来的有关机器学习传统算法的一些东西.所以说cs229的有些内容我会暂时先去掉放在别的部分里面,也会加上很多重要的,但是cs229没有讲到的东西.而且本系列 ...
随机推荐
- 539 Minimum Time Difference 最小时间差
给定一个 24 小时制(小时:分钟)的时间列表,找出列表中任意两个时间的最小时间差并已分钟数表示.示例 1:输入: ["23:59","00:00"]输出: 1 ...
- JS脚本不能执行
这段时间在做前端的动态页面,出了很多问题,因为js平时用的很少,所以花了不少无用功. 其中有两点一定要注意: 1.当js中有语法错误时,js脚本会无法执行. 2.当js脚本中有未定义的变量时,后边的语 ...
- listView onItemClick失效
1.先检查list是否设置监听onItemClick事件 2.ListView中有按钮时,会使子项的onItemClick事件无效,如果onItemClick不能触发,在ListView子项目布局文件 ...
- 学习cocos2dx3.1.0
static_cast<type-id>expression 该运算符把expression转换为type-id类型 Lambda表达式 CallFunc::create([=](){} ...
- MyEclipse中把java项目打包——含有第三方jar包【转】
也适用于eclipse导出jar. 在将项目打包为jar包时一直出现“ClassNotDefFound”错误,百度了很多解决办法都没有解决.最终找到一个很好的解决办法. 1.打包步骤 (1)右键单击j ...
- Redis监控之redis-live.conf配置
{ "RedisServers": [ { "server": "192.168.1.201", "port": 637 ...
- kettle数据同步方法
1.实时性要求不高,采用全删全插的方式(适合于维度表.大数据量表) 2.有时间维度,直接从事实表同步的数据,可以采用根据时间字段进行筛选,增量同步.这个网上有很多例子,就不重复写了. 3.没有时间维度 ...
- JS原型、原型链、构造函数、实例与继承
https://cloud.tencent.com/developer/article/1408283 https://cloud.tencent.com/developer/article/1195 ...
- python 判断路径是否存在
import os os.path.exists(文件绝对路径)
- 二、pandas入门
import numpy as np import pandas as pd Series: #创建Series方法1 s1=pd.Series([1,2,3,4]) s1 # 0 1 # 1 2 # ...