UVA10294 Arif in Dhaka (First Love Part 2) —— 置换、poyla定理
题目链接:https://vjudge.net/problem/UVA-10294




题解:
白书P146~147。
为什么旋转i个间距,就有gcd(i,n)个循环,且每个循环有n/gcd(i,n)个元素?
证明:
(gcd:最大公约数,lcm:最小公倍数)
将珠子从0到n-1标号,对于旋转i位的置换,在以0号为起点,长度为t的一个循环节中,元素标号为:0,i%n,(i*2)%n,…,(i*(t-1))%n
易知:(i*t)%n==0(循环大小为t,跳t次就回到初始点0),即 n*k == i*t,其中n,k,i,t为正整数,因此等式左右的最小值为lcm(n,i),即i*t==lcm(n,i),为什么i*t取最小值,即t取最小值?因为是从0第一次跳到0就完成整个循环的遍历,这个“第一次”就决定了是最早满足条件的那个t,即最小t。
∴ t == lcm(n,i)/i == ( n*i/gcd(n,i) )/i == n/gcd(n,i)
∴ 循环节t==n/gcd(n,i),循环节的个数为:n/t == gcd(n,i)
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = ; LL gcd(LL a, LL b)
{
return b==?a:gcd(b,a%b);
} LL Pow[MAXN];
int main()
{
int n, t;
while(scanf("%d%d", &n,&t)!=EOF)
{
Pow[] = ;
for(int i = ; i<=n; i++) Pow[i] = 1LL*Pow[i-]*t;
LL a = , b = ;
for(int i = ; i<n; i++)
a += Pow[gcd(i,n)];
if(n%)
b = 1LL*n*Pow[n/+];
else
b = 1LL*n/*(Pow[n/]+Pow[n/+]); printf("%lld %lld\n", a/n, (a+b)//n);
}
}
UVA10294 Arif in Dhaka (First Love Part 2) —— 置换、poyla定理的更多相关文章
- [Uva10294]Arif in Dhaka
[Uva10294]Arif in Dhaka 标签: 置换 Burnside引理 题目链接 题意 有很多个珠子穿成环形首饰,手镯可以翻转和旋转,项链只能旋转.(翻转过的手镯相同,而项链不同) 有n个 ...
- UVA10294 Arif in Dhaka (群论,Polya定理)
UVA10294 Arif in Dhaka (群论,Polya定理) 题意 : 给你一个长为\(n\)的项链和手镯,每个珠子有\(m\)种颜色. 两个手镯定义为相同,即它们通过翻转和旋转得到一样的手 ...
- UVA10294 Arif in Dhaka (First Love Part 2)
题意 PDF 分析 用n颗宝石串成项链和手镯, 每颗宝石的颜色可以t种颜色中的一种,当A类项链经过旋转得B类项链时,A和B属于一类项链, 而手镯不仅可以旋转还可以翻转,当A类手镯经过翻转得得到B类手镯 ...
- Uva10294 Arif in Dhaka (置换问题)
扯回正题,此题需要知道的是置换群的概念,这点在刘汝佳的书中写的比较详细,此处不多做赘述.此处多说一句的是第二种手镯的情况.在下图中“左图顺时针转1个位置”和“右图顺时针旋转5个位置”是相同的,所以在最 ...
- 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)
题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...
- UVa 10294 (Pólya计数) Arif in Dhaka (First Love Part 2)
Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用 ...
- Uva 10294 Arif in Dhaka (First Love Part 2)
Description 现有一颗含\(N\)个珠子的项链,每个珠子有\(t\)种不同的染色.现求在旋转置换下有多少种本质不同的项链,在旋转和翻转置换下有多少种本质不同的项链.\(N < 51,t ...
- UVa 10294 Arif in Dhaka (First Love Part 2)(置换)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35397 [思路] Polya定理. 旋转:循环节为gcd(i,n) ...
- Arif in Dhaka (First Love Part 2) UVA - 10294(Polya定理)
这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转 而 项练只能旋转 解析: 注意Poly ...
随机推荐
- 2017.2.15 开涛shiro教程-第二十一章-授予身份与切换身份(一) table、entity、service、dao
原博客地址:http://jinnianshilongnian.iteye.com/blog/2018398 根据下载的pdf学习. 第二十一章 授予身份与切换身份(一) 1.使用场景 某个领导因为某 ...
- 2016.7.12 在navicat中用sql语句建表
参考资料: http://jingyan.baidu.com/article/f0e83a25a8c4b022e5910116.html 即新建query,然后run. (1)点击要新建表的位置,选择 ...
- npm使用指南
npm使用指南 作者:chszs,未经博主同意不得转载.经许可的转载需注明作者和博客主页:http://blog.csdn.net/chszs npm介绍 npm全称为Node Package Man ...
- Linux中运行c程序,与系统打交道
例一:system系统调用是为了方便调用外部程序,执行完毕后返回调用进程. #include <stdio.h> #include <stdlib.h> main() { pr ...
- 优秀JS学习站点
第一个:电子书类集合站点:http://www.javascriptcn.com/thread-2.html 第二类:移动端博客学习: https://segmentfault.com/a/11900 ...
- java 中 wait和notify的用法
package com.test; public class OutputThread { public static Object lockObj=new Object(); public stat ...
- intellij 开发webservice
最近项目中有用到WebService,于是就研究了一下,但是关于intellij 开发 WebService 的文章极少,要不就是多年以前,于是研究一下,写这篇博文.纯属记录,分享,中间有不对的地方, ...
- mysql日期格式转化
select DATE_FORMAT( '20170701', '%Y-%m-%d'); 先挖坑
- python学习(四)字符串学习
#!/usr/bin/python # 这一节学习的是python中的字符串操作 # 字符串是在Python中作为序列存在的, 其他的序列有列表和元组 # 1. 序列的操作 S = 'Spam' # ...
- 【Python】IDLE启动错误
启动IDLE时报Subprocess Startup Error错误 错误信息 IDLE's subprocess didn't make connection.Either IDLE cant't ...