Connections between cities

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7716    Accepted Submission(s): 1930

Problem Description
After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
 
Input
Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
 
Output
For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
 
Sample Input
5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
 
Sample Output
Not connected
6
模板题,注意该题图不连通,在tarjan算法中将d[]设为-1.
RMQ+LCA,在线算法
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAXN=;
struct Edge{
int to,cost,next;
}es[MAXN*];
int head[MAXN],tot;
void add_edge(int u,int v,int cost)
{
es[tot].to=v;
es[tot].cost=cost;
es[tot].next=head[u];
head[u]=tot++;
}
int V,E,Q;
int dp[MAXN*][];
int depth[MAXN*];
int vs[MAXN*];
int id[MAXN];
int cnt,dep;
int d[MAXN];
void dfs(int u,int fa)
{
int temp=++dep;
depth[++cnt]=temp;
vs[temp]=u;
id[u]=cnt;
for(int i=head[u];i!=-;i=es[i].next)
{
int to=es[i].to;
if(to==fa) continue;
d[to]=d[u]+es[i].cost;
dfs(to,u);
depth[++cnt]=temp;
}
} void init_rmq(int n)
{
for(int i=;i<=n;i++) dp[i][]=depth[i]; int m=floor(log(n*1.0)/log(2.0));
for(int j=;j<=m;j++)
for(int i=;i<=n-(<<j)+;i++)
dp[i][j]=min(dp[i][j-],dp[i+(<<(j-))][j-]);
}
int rmq(int a,int b)
{
int k=floor(log((b-a+)*1.0)/log(2.0));
return min(dp[a][k],dp[b-(<<k)+][k]);
}
int LCA(int u,int v)
{
if(id[u]>id[v]) swap(u,v);
int k=rmq(id[u],id[v]);
return vs[k];
} int par[MAXN],rnk[MAXN];
void init_set(int n)
{
for(int i=;i<=n;i++)
{
par[i]=i;
rnk[i]=;
}
}
int fnd(int x)
{
if(par[x]==x)
return x;
return par[x]=fnd(par[x]);
}
void unite(int x,int y)
{
int a=fnd(x);
int b=fnd(y);
if(a==b) return ;
if(rnk[a]<rnk[b])
{
par[a]=b;
}
else
{
par[b]=a;
if(rnk[a]==rnk[b]) rnk[a]++;
}
}
bool same(int x,int y)
{
return fnd(x) == fnd(y);
}
int main()
{
while(scanf("%d%d%d",&V,&E,&Q)!=EOF)
{
tot=;
memset(head,-,sizeof(head));
cnt=;
dep=;
memset(d,,sizeof(d));
memset(id,,sizeof(id));
init_set(V);
for(int i=;i<E;i++)
{
int u,v,cost;
scanf("%d%d%d",&u,&v,&cost);
add_edge(u,v,cost);
add_edge(v,u,cost);
unite(u,v);
}
for(int i=;i<=V;i++)
if(!id[i]) dfs(i,-);
init_rmq(cnt);
while(Q--)
{
int u,v;
scanf("%d%d",&u,&v);
if(same(u,v))
{
printf("%d\n",d[u]+d[v]-*d[LCA(u,v)]);
}
else
{
printf("Not connected\n");
}
}
}
return ;
}
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
using namespace std;
const int MAXN=;
struct Edge{
int to,cost,next;
}es[*MAXN];
int V,E,Q;
struct Query{
int v,next;
}qs[*MAXN];
int head[MAXN],tot;
void add_edge(int u,int v,int cost)
{
es[tot].to=v;
es[tot].cost=cost;
es[tot].next=head[u];
head[u]=tot++;
}
int qhead[MAXN],ant;
void add_query(int u,int v)
{
qs[ant].v=v;
qs[ant].next=qhead[u];
qhead[u]=ant++;
} int d[MAXN];
int ans[*MAXN];
int par[MAXN];
bool vis[MAXN];
int fnd(int x)
{
if(x==par[x])
return x;
return par[x]=fnd(par[x]);
}
void dfs(int u,int fa)
{
par[u]=u;
vis[u]=true;
for(int i=head[u];i!=-;i=es[i].next)
{
int v=es[i].to;
if(vis[v]) continue;
d[v]=d[u]+es[i].cost;
dfs(v,u);
par[v]=u;
}
for(int i=qhead[u];i!=-;i=qs[i].next)
{
int v=qs[i].v;
if(vis[v])
{
if(d[v]!=-)
ans[i/]=d[u]+d[v]-*d[fnd(v)];
else
ans[i/]=-;
}
}
}
int main()
{
while(~scanf("%d %d %d",&V,&E,&Q))
{
tot=;
memset(head,-,sizeof(head));
ant=;
memset(qhead,-,sizeof(qhead));
memset(vis,false,sizeof(vis));
for(int i=;i<E;i++)
{
int u,v,cost;
scanf("%d%d%d",&u,&v,&cost);
add_edge(u,v,cost);
add_edge(v,u,cost);
}
for(int i=;i<Q;i++)
{
int u,v;
scanf("%d%d",&u,&v);
add_query(u,v);
add_query(v,u);
}
for(int i=;i<=V;i++)
if(!vis[i])
{
memset(d,-,sizeof(d));
d[i]=;
dfs(i,-);
}
for(int i=;i<Q;i++)
if(ans[i]==-) printf("Not connected\n");
else printf("%d\n",ans[i]);
}
return ;
}

HDU2874(LCA应用:求两点之间距离,图不连通)的更多相关文章

  1. 求两点之间距离 C++

    求两点之间距离(20 分) 定义一个Point类,有两个数据成员:x和y, 分别代表x坐标和y坐标,并有若干成员函数. 定义一个函数Distance(), 用于求两点之间的距离.输入格式: 输入有两行 ...

  2. UESTC(LCA应用:求两点之间的距离)

    Journey Time Limit: 15000/3000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Bob has ...

  3. C#面向对象思想计算两点之间距离

    题目为计算两点之间距离. 面向过程的思维方式,两点的横坐标之差,纵坐标之差,平方求和,再开跟,得到两点之间距离. using System; using System.Collections.Gene ...

  4. 武汉科技大学ACM :1006: 零起点学算法25——求两点之间的距离

    Problem Description 输入平面坐标系中2点的坐标,输出它们之间的距离 Input 输入4个浮点数x1 y1 x2 y2,分别是点(x1,y1) (x2,y2)的坐标(多组数据) Ou ...

  5. 求两点之间最短路径-Dijkstra算法

     Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...

  6. JavaScript求两点之间相对于Y轴的顺时针旋转角度

    需求: 已知一个向量,初始位置在y轴方向,如图红色箭头,绕中心点(x1, y1)旋转若干角度后,到达Line(x2,y2 x1,y1)的位置,求旋转角度 分析: 坐标点(x1, y1)(x2, y2) ...

  7. C# 通过GPS坐标,计算两点之间距离

    之前在网上有很多这种计算的,但是代码都不怎么全.经过多方打听查询.找到完整代码.现将代码共享给大家. 有需要者觉得有用者欢迎使用.觉得用或简单的高手,请绕. public static double ...

  8. URAL 题目1553. Caves and Tunnels(Link Cut Tree 改动点权,求两点之间最大)

    1553. Caves and Tunnels Time limit: 3.0 second Memory limit: 64 MB After landing on Mars surface, sc ...

  9. sql 根据两点经纬度算出两点之间距离

    select (sqrt( ( ((121.544685-longitude)*PI()*12656*cos(((31.134857+latitude)/2)*PI()/180)/180) * ((1 ...

随机推荐

  1. 【零基础学习iOS开发】【01-前言】02-准备

    一.程序设计语言 上一讲已经说到:要想开发一款软件,首先得学习一些对应的程序设计语言. 至于iOS开发,须要学习的语言主要有:C.C++.Objective-C. 回到顶部 二.是否须要计算机专业知识 ...

  2. RecyclerView onItemClick button和布局都有单击事件时的处理方式

    RecyclerView为了给开发人员提供更大的自由度.没有默认的提供onItemClick接口. 网上有一种比較简单的实现方式 , 适用于不须要针对item里面某个button做特殊处理的情况 我眼 ...

  3. MySQL 查询某个列中同样值的数量统计

    数据如今是这种,我想确定出type列中的news和image....甚至以后有其它值,他们分别有多少个. SELECT type, count(1) AS counts FROM material G ...

  4. js增加收藏

    <html> <span style="white-space:pre"> </span><head> <span style ...

  5. Android 学习之逐帧动画(Frame)

    帧动画就是将一些列图片.依次播放. 利用肉眼的"视觉暂留"的原理,给用户的感觉是动画的错觉,逐帧动画的原理和早期的电影原理是一样的. a:须要定义逐帧动画,能够通过代码定义.也能够 ...

  6. 系统安全-PAM

    Pluggable Authentication Modules(可插入验证模块,简称PAM) Linux-PAM(Pluggable Authentication Modules for Linux ...

  7. 基于tornado实现的web聊天室

    目录结构: # -*- coding:utf-8 -*- import uuid import json import tornado.ioloop import tornado.web import ...

  8. Process Autocad by python

    一.处理AutoCad模块 -pyautocad 1.安装 pip install pyautocad 注:1.该操作会自动安装 comtypes模块,如果其他方式安装,请自行安装comtypes模块 ...

  9. App性能优化浅谈

    前言 前段时间给公司的小伙伴们进行了关于app性能优化的技术分享.这里我稍微整理一下也给大家分享一下.关于性能优化这个话题非常大,涉及面能够非常广,也能够非常深入.本人能力有限,不会给大家讲特别难懂, ...

  10. webapp 打包

    输入您的WAP网址,技术员马上帮您封装APP! APP人工打包-智睿软件_app打包_苹果app发布_app 上架_ios 上架_封装app_网站转app_安卓发布 http://app.niuhu1 ...