Huber鲁棒损失函数
在统计学习角度,Huber损失函数是一种使用鲁棒性回归的损失函数,它相比均方误差来说,它对异常值不敏感。常常被用于分类问题上。
下面先给出Huber函数的定义:
这个函数对于小的a值误差函数是二次的,而对大的值误差函数是线性的。变量a表述residuals,用以描述观察值与预测值之差:,因此我们可以将上面的表达式写成下面的形式:
Huber loss (green, ) and squared error loss (blue) as a function of
两个最常用的损失函数是平方损失(L2),,和绝对值损失(L1)
。然而绝对损失在特定点上不可微分,a=0,在a=0点上对它等于区间[-1,+1]的凸次微分是可微分的;绝对值损失函数导致了中值无偏的估计器,它可以通过线性编程为特定的数据集评估。平方损失有着它的缺点:它倾向于对异常值敏感--当累加一组a(as in
)时,当数据时重尾分布是(根据估计理论,中值的渐进相关效率会在重尾分布时表现的较差)采样均值会受少量的较大的值的影响。
像上面定义的那样,在Huber损失函数的最小值在a=0周边邻域上是凸的,huber损失函数将拓展了 和
上的微分到仿射函数上。这些特性允许结合均值无偏的敏感性、均值的最小变化估计器(二次损失函数)和无偏中值估计器的鲁棒性(绝对值损失函数)。
伪Huber损失函数
伪Huber损失函数是Huber函数的平滑版本,而且确保了所有角度上是连续可导的。它可以被定义成:
像上面公式描述的那样,对于小的值a,这个损失函数的值可以表示为a/2,对于较大的a值可以近似成一条斜率为 的直线。当然也存在其他形式的伪Huber损失函数。
分类问题上的演变
对于分类问题,一种Huber损失函数的变形--modified Huber常常被使用。给定一个预测函数f(x)和一个真实的二元分类标签,modified Huber可以被定义为:
项就是只用在SVM上的hinge loss,二次平滑的hinge loss就是L的通用表达形式。
应用
Huber 损失函数常常用于鲁棒性系统分析,M元估计和适应性建模。
Huber鲁棒损失函数的更多相关文章
- 基于2D-RNN的鲁棒行人跟踪
基于2D-RNN的鲁棒行人跟踪 Recurrent Neural Networks RNN 行人跟踪 读"G.L. Masala, et.al., 2D Recurrent Neural N ...
- SIFT+HOG+鲁棒统计+RANSAC
今天的计算机视觉课老师讲了不少内容,不过都是大概讲了下,我先记录下,细讲等以后再补充. SIFT特征: 尺度不变性:用不同参数的高斯函数作用于图像(相当于对图像进行模糊,得到不同尺度的图像),用得到的 ...
- Robust Locally Weighted Regression 鲁棒局部加权回归 -R实现
鲁棒局部加权回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 算法参考文献: (1) Robust L ...
- 鲁棒图(Robustness Diagram)
鲁棒图与系统需求分析 鲁棒图(Robustness Diagram)是由Ivar Jacobson于1991年发明的,用以回答“每个用例需要哪些对象”的问题.后来的UML并没有将鲁棒图列入UML标准, ...
- H∞一般控制问题的鲁棒叙述性说明
Robust Control System:反馈控制有承受一定类不确定能力的影响,这一直保持在这种不确定的条件(制)稳定.动态特性(灵敏度)和稳态特性(逐步调整)的能力. 非结构不确定性(Unstru ...
- 如何编写高质量的 JS 函数(2) -- 命名/注释/鲁棒篇
本文首发于 vivo互联网技术 微信公众号 链接:https://mp.weixin.qq.com/s/sd2oX0Z_cMY8_GvFg8pO4Q作者:杨昆 上篇<如何编写高质量的 JS 函数 ...
- python练习 英文字符的鲁棒输入+数字的鲁棒输入
鲁棒 = Robust 健壮 英文字符的鲁棒输入 描述 获得用户的任何可能输入,将其中的英文字符进行打印输出,程序不出现错误. ...
- CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL)
CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL) PointASNL: Robust Point Clouds Processing Using Nonlocal N ...
- 【论文阅读】Beyond OCR + VQA: 将OCR融入TextVQA的执行流程中形成更鲁棒更准确的模型
论文题目:Beyond OCR + VQA: Involving OCR into the Flow for Robust and Accurate TextVQA 论文链接:https://dl.a ...
随机推荐
- PHP闭包详解
匿名函数 提到闭包就不得不想起匿名函数,也叫闭包函数(closures),貌似PHP闭包实现主要就是靠它.声明一个匿名函数是这样: $func = function() { }; //带结束符 可以看 ...
- 【Lintcode】096.Partition List
题目: Given a linked list and a value x, partition it such that all nodes less than x come before node ...
- Hive操作笔记
hive库清表,删除数据 insert overwrite table lorry.bigdata select * from lorry.bigdata where 1=0 hive的simple模 ...
- AtCoder Grand Contest 009 E:Eternal Average
题目传送门:https://agc009.contest.atcoder.jp/tasks/agc009_e 题目翻译 纸上写了\(N\)个\(1\)和\(M\)个\(0\),你每次可以选择\(k\) ...
- AtCoder Regular Contest 074 E:RGB Sequence
题目传送门:https://arc074.contest.atcoder.jp/tasks/arc074_c 题目翻译 给你一行\(n\)个格子,你需要给每个格子填红绿蓝三色之一,并且同时满足\(m\ ...
- BZOJ1878:[SDOI2009]HH的项链
浅谈树状数组与线段树:https://www.cnblogs.com/AKMer/p/9946944.html 题目传送门:https://www.lydsy.com/JudgeOnline/prob ...
- vijos:P1155集合位置(次短路)
描述 每次有大的活动,大家都要在一起“聚一聚”,不管是去好乐迪,还是避风塘,或者汤姆熊,大家都要玩的痛快.还记得心语和花儿在跳舞机上的激情与释放,还记得草草的投篮技艺是如此的高超,还记得狗狗的枪法永远 ...
- Struts2 + easyui的DataGrid 分页
jsp页面 js代码: $(function() { $('#ff').hide(); $('#tt').datagrid({ title : '信息显示', iconCls : 'icon-save ...
- 2、Python IDLE入门
转载:http://www.cnblogs.com/dsky/archive/2012/06/04/2535397.html 1.IDLE是Python软件包自带的一个集成开发环境,初学者可以利用它方 ...
- 面试问题 ---C#中的委托
一.C#委托是什么的? 在正式介绍委托之前,我想下看看生活中委托的例子——生活中,如果如果我们需要打官司,在法庭上是由律师为我们辩护的,然而律师真真执行的是当事人的陈词,这时候律师就是一个委托对象,当 ...