Variational Bayes
一、前言
变分贝叶斯方法最早由Matthew J.Beal在他的博士论文《Variational Algorithms for Approximate Bayesian Inference》中提出,作者将其应用于隐马尔科夫模型,混合因子分析,线性动力学,图模型等。变分贝叶斯是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术。它主要应用于复杂的统计模型中,这种模型一般包括三类变量:观测变量(observed variables, data),未知参数(parameters)和潜变量(latent variables)。在贝叶斯推断中,参数和潜变量统称为不可观测变量(unobserved variables)。变分贝叶斯方法主要是两个目的:
(1) 近似不可观测变量的后验概率,以便通过这些变量作出统计推断。
(2) 对一个特定的模型,给出观测变量的边缘似然函数(或称为证据,evidence)的下界。主要用于模型的选择,认为模型的边缘似然值越高,则模型对数据拟合程度越好,该模型产生Data的概率也越高。
对于第一个目的,蒙特卡洛模拟,特别是用Gibbs取样的MCMC方法,可以近似计算复杂的后验分布,能很好地应用到贝叶斯统计推断。此方法通过大量的样本估计真实的后验,因而近似结果带有一定的随机性。与此不同的是,变分贝叶斯方法提供一种局部最优,但具有确定解的近似后验方法。
从某种角度看,变分贝叶斯可以看做是EM算法的扩展,因为它也是采用极大后验估计(MAP),即用单个最有可能的参数值来代替完全贝叶斯估计。另外,变分贝叶斯也通过一组相互依然(mutually dependent)的等式进行不断的迭代来获得最优解。
二、问题描述
重新考虑一个问题:1)有一组观测数据 D ,并且已知模型的形式,求参数与潜变量(或不可观测变量) Z={Z1,...,Zn} 的后验分布: P(Z|D) 。
正如上文所描述的后验概率的形式通常是很复杂(Intractable)的,对于一种算法如果不能在多项式时间内求解,往往不是我们所考虑的。因而我们想能不能在误差允许的范围内,用更简单、容易理解(tractable)的数学形式 Q(Z) 来近似 P(Z|D) ,即 P(Z|D)≈Q(Z) 。
由此引出如下两个问题:
(1) 假设存在这样的 Q(Z) ,那么如何度量 Q(Z) 与 P(Z|D) 之间的差异性(dissimilarity)?
(2) 如何得到简单的 Q(Z) ?
对于问题一,幸运的是,我们不需要重新定义一个度量指标。在信息论中,已经存在描述两个随机分布之间距离的度量,即相对熵,或者称为Kullback-Leibler散度。
对于问题二,显然我们可以自主决定 Q(Z) 的分布,只要它足够简单,且与 P(Z|D) 接近。然而不可能每次都手工给出一个与 P(Z|D) 接近且简单的 Q(Z) ,其方法本身已经不具备可操作性。所以需要一种通用的形式帮助简化问题。那么数学形式复杂的原因是什么?在“模型的选择”部分,曾提到Occam's razor,认为一个模型的参数个数越多,那么模型复杂的概率越大;此外,如果参数之间具有相互依赖关系(mutually dependent),那么通常很难对参数的边缘概率精确求解。
幸运的是,统计物理学界很早就关注了高维概率函数与它的简单形式,并发展了平均场理论。简单讲就是:系统中个体的局部相互作用可以产生宏观层面较为稳定的行为。于是我们可以作出后验条件独立(posterior independence)的假设。即, ∀i,p(Z|D)=p(Zi|D)p(Z−i|D)
三、Kullback-Leibler散度


四、平均场理论(Mean Field Method)

4.1 平均场方法的合理性


4.2 平均场估计下边缘概率的无意义性(VB-marginals)

五、边缘密度(VB-marginal)公式的推导
上文已经提到我们要找到一个更加简单的函数 D(Z) 来近似 P(Z|D) ,同时问题转化为求解证据 logP(Z) 的下界 L(Q) ,或者 L(Q(Z)) 。应该注意到 L(Q) 并非普通的函数,而是以整个函数为自变量的函数,这便是泛函。我们先介绍一下什么是泛函,以及泛函取得极值的必要条件。




参考文献
[1] V. Smidl, A.Quinn(2005), The Variational Bayes Method In Signal Processing, Signal and Communication Technology.
[2] Matthew J.Beal(1998), Variational Algorithms for Approximate Bayesian Inference, London, UK: University of Cambridge, PHD. Thesis
[3] Charles W.Fox, Stephen J.Roberal on variational approximation methods, Advanced mean field methods: theory and practice
全文下载:Variational Inference -full.pdf
Variational Bayes的更多相关文章
- Auto-Encoding Variational Bayes
目录 主要内容 Encoder (损失part1) Decoder (损失part2) 伯努利分布 高斯分布 代码 Kingma D P, Welling M. Auto-Encoding Varia ...
- (译) Conditional Variational Autoencoders 条件式变换自编码机
Conditional Variational Autoencoders --- 条件式变换自编码机 Goal of a Variational Autoencoder: 一个 VAE(variati ...
- 条件式变分自编码机(Conditional Variational Autoencoders)
Conditional Variational Autoencoders 条件式变换自编码机 摘要: Conditional Variational Autoencoders --- 条件式变换自编码 ...
- (zhuan) Variational Autoencoder: Intuition and Implementation
Agustinus Kristiadi's Blog TECH BLOG TRAVEL BLOG PORTFOLIO CONTACT ABOUT Variational Autoencoder: In ...
- VAE(Variational Autoencoder)的原理
Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint ar ...
- [Bayes ML] This is Bayesian Machine Learning
From: http://www.cnblogs.com/bayesianML/p/6377588.html#central_problem You can do it: Dirichlet Proc ...
- 变分推断(Variational Inference)
(学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这 ...
- 变分自编码器(Variational auto-encoder,VAE)
参考: https://www.cnblogs.com/huangshiyu13/p/6209016.html https://zhuanlan.zhihu.com/p/25401928 https: ...
- 变分推断(Variational Inference)
变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x).那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F ...
随机推荐
- jmeter ---json几种读取方式,ArrayList循环读取
在之前写过提取json数据格式的文章,这次对jmeter读取json数据格式进行整理. 举例一个接口的response 格式如下: { "data" : { "devic ...
- DFS和BFS(无向图)Java实现
package practice; import java.util.Iterator; import java.util.Stack; import edu.princeton.cs.algs4.* ...
- 1092: 最大价值(dollars) 算法 动态规划
题目地址:http://www.hustoj.com/oj/problem.php?id=1092 题目描述 Dave以某种方法获取了未来几天美元对德国马克的兑换率.现在Dave只有100美元,请编程 ...
- 为什么Java 两个Integer 中1000==1000为false而100==100为true?
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt346 这是一个挺有意思的讨论话题. 如果你运行下面的代码 1 2 3 4 I ...
- poj 1882完全背包变形
题意:给出一个上限硬币数量s,给出n套硬币价值,求一套硬币能用不大于s数量的硬币组成从1开始连续的区间价值,其中,如果其最大值相同,输出数量小的和价值小的. 思路:很明显的完全背包,纠结后面最大值相同 ...
- 关于selenium IDE找不到元素
selenium IDE ,明明存在元素,却找不到元素 ,报错Element not found 标签: seleniumselenium IDE自动化测试ide 2016-10-31 13:25 1 ...
- jQ的一些常识
$(window).width()//可视区宽度 $(document).width()//整个页面文档流的宽度 $('body').width()//body元素的宽度(注意jQ获取body对象有引 ...
- HTML canvas绘制椭圆
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 【Beta】 第四次Daily Scrum Meeting
一.本次会议为第四次meeting会议 二.时间:10:00AM-10:20AM 地点:陆大楼 三.会议站立式照片 四.今日任务安排 成员 昨日任务 今日任务 林晓芳 查询app提醒功能模块和用户登录 ...
- 201521123100 《Java程序设计》 第2周学习总结
一. 本章学习总结 1.本周学习了Java语言中各种数据类型以及运算符,其中大部分还是和c语言差不多,发现了各种语言的相通性 2.进一步学习了eclipse的功能和使用方法,学会了如何将其与码云连接更 ...