Variational Bayes
一、前言
变分贝叶斯方法最早由Matthew J.Beal在他的博士论文《Variational Algorithms for Approximate Bayesian Inference》中提出,作者将其应用于隐马尔科夫模型,混合因子分析,线性动力学,图模型等。变分贝叶斯是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术。它主要应用于复杂的统计模型中,这种模型一般包括三类变量:观测变量(observed variables, data),未知参数(parameters)和潜变量(latent variables)。在贝叶斯推断中,参数和潜变量统称为不可观测变量(unobserved variables)。变分贝叶斯方法主要是两个目的:
(1) 近似不可观测变量的后验概率,以便通过这些变量作出统计推断。
(2) 对一个特定的模型,给出观测变量的边缘似然函数(或称为证据,evidence)的下界。主要用于模型的选择,认为模型的边缘似然值越高,则模型对数据拟合程度越好,该模型产生Data的概率也越高。
对于第一个目的,蒙特卡洛模拟,特别是用Gibbs取样的MCMC方法,可以近似计算复杂的后验分布,能很好地应用到贝叶斯统计推断。此方法通过大量的样本估计真实的后验,因而近似结果带有一定的随机性。与此不同的是,变分贝叶斯方法提供一种局部最优,但具有确定解的近似后验方法。
从某种角度看,变分贝叶斯可以看做是EM算法的扩展,因为它也是采用极大后验估计(MAP),即用单个最有可能的参数值来代替完全贝叶斯估计。另外,变分贝叶斯也通过一组相互依然(mutually dependent)的等式进行不断的迭代来获得最优解。
二、问题描述
重新考虑一个问题:1)有一组观测数据 D ,并且已知模型的形式,求参数与潜变量(或不可观测变量) Z={Z1,...,Zn} 的后验分布: P(Z|D) 。
正如上文所描述的后验概率的形式通常是很复杂(Intractable)的,对于一种算法如果不能在多项式时间内求解,往往不是我们所考虑的。因而我们想能不能在误差允许的范围内,用更简单、容易理解(tractable)的数学形式 Q(Z) 来近似 P(Z|D) ,即 P(Z|D)≈Q(Z) 。
由此引出如下两个问题:
(1) 假设存在这样的 Q(Z) ,那么如何度量 Q(Z) 与 P(Z|D) 之间的差异性(dissimilarity)?
(2) 如何得到简单的 Q(Z) ?
对于问题一,幸运的是,我们不需要重新定义一个度量指标。在信息论中,已经存在描述两个随机分布之间距离的度量,即相对熵,或者称为Kullback-Leibler散度。
对于问题二,显然我们可以自主决定 Q(Z) 的分布,只要它足够简单,且与 P(Z|D) 接近。然而不可能每次都手工给出一个与 P(Z|D) 接近且简单的 Q(Z) ,其方法本身已经不具备可操作性。所以需要一种通用的形式帮助简化问题。那么数学形式复杂的原因是什么?在“模型的选择”部分,曾提到Occam's razor,认为一个模型的参数个数越多,那么模型复杂的概率越大;此外,如果参数之间具有相互依赖关系(mutually dependent),那么通常很难对参数的边缘概率精确求解。
幸运的是,统计物理学界很早就关注了高维概率函数与它的简单形式,并发展了平均场理论。简单讲就是:系统中个体的局部相互作用可以产生宏观层面较为稳定的行为。于是我们可以作出后验条件独立(posterior independence)的假设。即, ∀i,p(Z|D)=p(Zi|D)p(Z−i|D)
三、Kullback-Leibler散度


四、平均场理论(Mean Field Method)

4.1 平均场方法的合理性


4.2 平均场估计下边缘概率的无意义性(VB-marginals)

五、边缘密度(VB-marginal)公式的推导
上文已经提到我们要找到一个更加简单的函数 D(Z) 来近似 P(Z|D) ,同时问题转化为求解证据 logP(Z) 的下界 L(Q) ,或者 L(Q(Z)) 。应该注意到 L(Q) 并非普通的函数,而是以整个函数为自变量的函数,这便是泛函。我们先介绍一下什么是泛函,以及泛函取得极值的必要条件。




参考文献
[1] V. Smidl, A.Quinn(2005), The Variational Bayes Method In Signal Processing, Signal and Communication Technology.
[2] Matthew J.Beal(1998), Variational Algorithms for Approximate Bayesian Inference, London, UK: University of Cambridge, PHD. Thesis
[3] Charles W.Fox, Stephen J.Roberal on variational approximation methods, Advanced mean field methods: theory and practice
全文下载:Variational Inference -full.pdf
Variational Bayes的更多相关文章
- Auto-Encoding Variational Bayes
目录 主要内容 Encoder (损失part1) Decoder (损失part2) 伯努利分布 高斯分布 代码 Kingma D P, Welling M. Auto-Encoding Varia ...
- (译) Conditional Variational Autoencoders 条件式变换自编码机
Conditional Variational Autoencoders --- 条件式变换自编码机 Goal of a Variational Autoencoder: 一个 VAE(variati ...
- 条件式变分自编码机(Conditional Variational Autoencoders)
Conditional Variational Autoencoders 条件式变换自编码机 摘要: Conditional Variational Autoencoders --- 条件式变换自编码 ...
- (zhuan) Variational Autoencoder: Intuition and Implementation
Agustinus Kristiadi's Blog TECH BLOG TRAVEL BLOG PORTFOLIO CONTACT ABOUT Variational Autoencoder: In ...
- VAE(Variational Autoencoder)的原理
Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint ar ...
- [Bayes ML] This is Bayesian Machine Learning
From: http://www.cnblogs.com/bayesianML/p/6377588.html#central_problem You can do it: Dirichlet Proc ...
- 变分推断(Variational Inference)
(学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这 ...
- 变分自编码器(Variational auto-encoder,VAE)
参考: https://www.cnblogs.com/huangshiyu13/p/6209016.html https://zhuanlan.zhihu.com/p/25401928 https: ...
- 变分推断(Variational Inference)
变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x).那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F ...
随机推荐
- jsp窗口关闭的触发函数
功能:当点击窗口[关闭按钮]时调用后台的servlet方法实现附件删除 <script type="text/javascript"> window.onbefo ...
- wireshark 随笔
在进行通信开发的过程中,我们往往会把本机既作为客户端又作为服务器端来调试代码,使得本机自己和自己通信.但是wireshark此时是无法抓取到数据包的,需要通过简单的设置才可以. 具体方法如下: ①:以 ...
- Linux和win7(win10)双系统时间错误问题 时间相差8小时
转载自 http://m.2cto.com/os/201204/126212.html 有修改 前一段时间刚装了centos 5.4和win7的双系统.发现win7的系统时间不对,机子没上网,每天开机 ...
- Express异步进化史
1.导言 在 Javascript 的世界里,异步(由于JavaScript的单线程运行,所以JavaScript中的异步是可以阻塞的)无处不在. Express 是 node 环境中非常流行的Web ...
- WCF(二)三种通信模式
WCF在通信过程中有三种模式:请求与答复.单向.双工通信 请求与答复模式 客户端发送请求,然后一直等待服务端的响应答复(异步调用除外),期间处于假死状态,直到服务端有了答复后才能继续执行其他程序 请求 ...
- Linux-使用patch命令给uboot打补丁(3)
patch:修改文件,让用户对原文件打补丁 用法 patch -p[剥离层级] <[补丁文件] 打补丁示例: u-boot-1.1.6_jz2440.patach补丁文件给u-b ...
- C#之实参和形参
1.值类型 例如:我们定义一个函数 static void Exchange(int x, int y) { int flag = x; flag = y; y = x; x = flag; } 其中 ...
- 如何解决xshell中无法输入中文的问题
自从安上了xshell以后,用着那叫一个顺手,美中不足的就是一直无法输入中文.不过,既然学习IT,就要习惯英文嘛~直到--我遇到了脚本,写好一个脚本,必要的注释是少不了的,但是作为一个英文渣渣,我真的 ...
- 201521123087 《java程序设计》 第七周学习总结
1. 本周学习总结 2. 书面作业 ArrayList代码分析1.1 解释ArrayList的contains源代码 ...
- 201521123121 《JAVA程序设计》第6周学习总结
1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰,内容覆盖 ...