BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b
Time Limit: 50 Sec Memory Limit: 256 MB
Submit: 4032 Solved: 1817
[Submit][Status][Discuss]
Description
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2 5 1 5 1
1 5 1 5 2
Sample Output
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
研究了好长时间差不多明白了,第一道莫比乌斯反演,好多值得学习的东西
首先,由容斥原理易得答案为
cal(b,d,k)-cal(a-1,d,k)-cal(b,c-1,k)+cal(a-1,c-1,k)
- 这个问题等价于询问有多少个数对(x,y)满足1<=x<=[n/k],1<=y<=[m/k]且x与y互质
- 考虑莫比乌斯反演,
- f(i)为1<=x<=n,1<=y<=m且gcd(x,y)=i的数对(x,y)的个数
- F(i)为1<=x<=n,1<=y<=m且i|gcd(x,y)的数对(x,y)的个数
- 显然,F(i)=(n/i)*(m/i) 整除,并且F(i)=Σ{i|d} f(d) 是倍数和
- 反演后,f(i)=Σ{i|d} miu(d/i)*F(d)=Σ{i|d} miu(d/i)*(n/d)*(m/d)
- 但这样每个询问复杂度是O(n)
- 观察式子,发现[n/d] 最多有2sqrt(n) 个取值(整除....一段相同 参考链接)
- 那么 (n/d)*(m/d)就至多有2sqrt(n)+2sqrt(m)个取值 (当然不是乘起来,因为对于一个n只有一个值而不是2sqrt(n)个)
- 计算每个询问时枚举这2sqrt(n)+2sqrt(m)个取值,因为一个取值是一段,要乘一段miu的和,所以对莫比乌斯函数维护一个前缀和,就可以在sqrt(n)时间内出解
【WT1(WT是从小新那里学来的....发现竟然是问题的首字母):】
f(k)=Σ{k|d} miu(d/k)*(n/d)*(m/d)这个式子怎么计算?
d是k的倍数,取值k,2*k,3*k,...,t*k
f(k)=Σ{i=1..n/k} miu(i)*(n/(k*i))*(m/(k*i)) //注意,【整除满足 x/a/b=a/(a*b)】
更一般的:
f(k)=Σ{k|d} miu(d/k)*F(d)
--> f(k)=Σ{i=1..n/k}miu(i)*F(i*k)
【WT2 】如何按照整除取值相同分段?
当前除法为n/i,与它相同的上界到n/(n/i)
为什么?我想了好久,最后的方法是
考虑n是一段区间,n=p*i+q,被分成p段长为i的
i每增加1 q就减少p,(这时候整除的取值没有改变),最多能减少q/p个,那么此时i=i+q/p=(i*p+q)/p=n/(n/i)
注意:miu的区间和*(n/i)*(m/i)可能会溢出,对拍都没有发现.......
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=5e4+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,a,b,c,d,k;
bool notp[N];
ll p[N],mu[N];
void sieve(){
mu[]=;
for(int i=;i<=N-;i++){
if(!notp[i]) p[++p[]]=i,mu[i]=-;
for(int j=;j<=p[]&&i*p[j]<=N-;j++){
int t=i*p[j];
notp[t]=;
if(i%p[j]==){
mu[t]=;
break;
}
mu[t]=-mu[i];
}
}
for(int i=;i<=N-;i++) mu[i]+=mu[i-];
}
ll cal(int n,int m,int k){
n/=k;m/=k;
if(n>m) swap(n,m);
ll ans=;int r=;
for(int i=;i<=n;i=r+){
r=min(n/(n/i),m/(m/i));
ans+=(mu[r]-mu[i-])*(n/i)*(m/i);
}
return ans;
}
int main(int argc, const char * argv[]) {
//freopen("in.txt","r",stdin);
//freopen("1.out","w",stdout);
sieve();
int T=read();
while(T--){
a=read();b=read();c=read();d=read();k=read();
printf("%lld\n",cal(b,d,k)-cal(a-,d,k)-cal(b,c-,k)+cal(a-,c-,k));
} return ;
}
附:还有另一种思考的角度,从莫比乌斯函数的角度考虑,殊途同归
复制鏼爷的题解
推导:
令
用莫比乌斯函数的性质把求和的式子换掉,
其中,更换求和指标,
容易知道单调不上升,且最多有
种不同的取值。所以按取值分成
个段分别处理,一个连续段内的和可以用预处理出的莫比乌斯函数前缀和求出
BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】的更多相关文章
- [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理
题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...
- BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...
- BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]
题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...
- [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
随机推荐
- Ubuntu 14.04 中 安装elasticsearch2.*+logstash2.*+kibana
在Ubuntu 14.04 上安装单机版ELK 2.*(脚本化) 1.判断是否为root权限 if [ "${UID}" -ne 0 ]; then echo "You ...
- 【解决方案】 org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'userHandler': Injection of resource dependencies failed;
一个错误会浪费好多青春绳命 鉴于此,为了不让大家也走弯路,分享解决方案. [错误代码提示] StandardWrapper.Throwableorg.springframework.beans.fac ...
- Android随笔之——Android时间、日期相关类和方法
今天要讲的是Android里关于时间.日期相关类和方法.在Android中,跟时间.日期有关的类主要有Time.Calendar.Date三个类.而与日期格式化输出有关的DateFormat和Simp ...
- Android 开发环境搭建以及工具(不断更新)
学习android需要学习的编程知识 https://wiki.cyanogenmod.org/w/Doc:_Development_Resources 从http://source.android. ...
- 【Oracle 集群】11G RAC 知识图文详细教程之RAC在LINUX上使用NFS安装前准备(六)
RAC在LINUX上使用NFS安装前准备(六) 概述:写下本文档的初衷和动力,来源于上篇的<oracle基本操作手册>.oracle基本操作手册是作者研一假期对oracle基础知识学习的汇 ...
- Events基本概念----Beginning Visual C#
span.kw { color: #007020; font-weight: bold; } code > span.dt { color: #902000; } code > span. ...
- Python 正则表达式入门(初级篇)
Python 正则表达式入门(初级篇) 本文主要为没有使用正则表达式经验的新手入门所写. 转载请写明出处 引子 首先说 正则表达式是什么? 正则表达式,又称正规表示式.正规表示法.正规表达式.规则表达 ...
- 类型“System.Data.Linq.DataContext”在未被引用的程序集中定义。必须添加对程序集“System.Data.Linq, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”的引用。
解决方法:添加System.Data.Linq.dll引用 http://www.cnblogs.com/m84641693/archive/2010/07/26/1785100.html http: ...
- helios架构详解(二)客户端架构和cluster
helios的客户端架构和服务器端类似,只有部分类有所区别(黄色的),下图是客户端的架构 可以看出实际上只有IConnection的俩个实例(TcpConnection.UdpConnection)是 ...
- 【无私分享:ASP.NET CORE 项目实战(第十一章)】Asp.net Core 缓存 MemoryCache 和 Redis
目录索引 [无私分享:ASP.NET CORE 项目实战]目录索引 简介 经过 N 久反复的尝试,翻阅了网上无数的资料,GitHub上下载了十几个源码参考, Memory 和 Redis 终于写出一个 ...