2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 4032  Solved: 1817
[Submit][Status][Discuss]

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000


研究了好长时间差不多明白了,第一道莫比乌斯反演,好多值得学习的东西

首先,由容斥原理易得答案为

cal(b,d,k)-cal(a-1,d,k)-cal(b,c-1,k)+cal(a-1,c-1,k)

  • 这个问题等价于询问有多少个数对(x,y)满足1<=x<=[n/k],1<=y<=[m/k]且x与y互质
  • 考虑莫比乌斯反演,
  • f(i)为1<=x<=n,1<=y<=m且gcd(x,y)=i的数对(x,y)的个数
  • F(i)为1<=x<=n,1<=y<=m且i|gcd(x,y)的数对(x,y)的个数
  • 显然,F(i)=(n/i)*(m/i) 整除,并且F(i)=Σ{i|d} f(d) 是倍数和
  • 反演后,f(i)=Σ{i|d} miu(d/i)*F(d)=Σ{i|d} miu(d/i)*(n/d)*(m/d)
  • 但这样每个询问复杂度是O(n)
  • 观察式子,发现[n/d] 最多有2sqrt(n) 个取值(整除....一段相同 参考链接)
  • 那么 (n/d)*(m/d)就至多有2sqrt(n)+2sqrt(m)个取值 (当然不是乘起来,因为对于一个n只有一个值而不是2sqrt(n)个)
  • 计算每个询问时枚举这2sqrt(n)+2sqrt(m)个取值,因为一个取值是一段,要乘一段miu的和,所以对莫比乌斯函数维护一个前缀和,就可以在sqrt(n)时间内出解

【WT1(WT是从小新那里学来的....发现竟然是问题的首字母):】

f(k)=Σ{k|d} miu(d/k)*(n/d)*(m/d)这个式子怎么计算?

d是k的倍数,取值k,2*k,3*k,...,t*k

f(k)=Σ{i=1..n/k} miu(i)*(n/(k*i))*(m/(k*i))   //注意,【整除满足 x/a/b=a/(a*b)】

更一般的:

f(k)=Σ{k|d} miu(d/k)*F(d)

--> f(k)=Σ{i=1..n/k}miu(i)*F(i*k)

 【WT2 】如何按照整除取值相同分段?

当前除法为n/i,与它相同的上界到n/(n/i)

为什么?我想了好久,最后的方法是

考虑n是一段区间,n=p*i+q,被分成p段长为i的

i每增加1 q就减少p,(这时候整除的取值没有改变),最多能减少q/p个,那么此时i=i+q/p=(i*p+q)/p=n/(n/i)

注意:miu的区间和*(n/i)*(m/i)可能会溢出,对拍都没有发现.......

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=5e4+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,a,b,c,d,k;
bool notp[N];
ll p[N],mu[N];
void sieve(){
mu[]=;
for(int i=;i<=N-;i++){
if(!notp[i]) p[++p[]]=i,mu[i]=-;
for(int j=;j<=p[]&&i*p[j]<=N-;j++){
int t=i*p[j];
notp[t]=;
if(i%p[j]==){
mu[t]=;
break;
}
mu[t]=-mu[i];
}
}
for(int i=;i<=N-;i++) mu[i]+=mu[i-];
}
ll cal(int n,int m,int k){
n/=k;m/=k;
if(n>m) swap(n,m);
ll ans=;int r=;
for(int i=;i<=n;i=r+){
r=min(n/(n/i),m/(m/i));
ans+=(mu[r]-mu[i-])*(n/i)*(m/i);
}
return ans;
}
int main(int argc, const char * argv[]) {
//freopen("in.txt","r",stdin);
//freopen("1.out","w",stdout);
sieve();
int T=read();
while(T--){
a=read();b=read();c=read();d=read();k=read();
printf("%lld\n",cal(b,d,k)-cal(a-,d,k)-cal(b,c-,k)+cal(a-,c-,k));
} return ;
}

附:还有另一种思考的角度,从莫比乌斯函数的角度考虑,殊途同归

复制鏼爷的题解

推导:




用莫比乌斯函数的性质把求和的式子换掉,

其中,更换求和指标,

容易知道单调不上升,且最多有种不同的取值。所以按取值分成个段分别处理,一个连续段内的和可以用预处理出的莫比乌斯函数前缀和求出

BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】的更多相关文章

  1. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  2. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  3. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  4. [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]

    题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...

  5. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  6. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  7. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  8. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  9. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

随机推荐

  1. 【原】SDWebImage源码阅读(二)

    [原]SDWebImage源码阅读(二) 本文转载请注明出处 —— polobymulberry-博客园 1. 解决上一篇遗留的坑 上一篇中对sd_setImageWithURL函数简单分析了一下,还 ...

  2. 推荐几款jquery图片切换插件

    一.前言 毕业季到了,大家都在匆匆忙忙的记录大学里最美好的时光,照片中各种花式.各种姿势都涌现出来了.这么多的照片怎么展示出来给自己的好友看呢?有人选择做成视频,有人选择ps之后做成图片集,而我选择利 ...

  3. Java Collection知识总结

    首先说说java中常用的集合容器:ArrayList,LinkedList,Vector,HashMap,Hashtable,HashSet,TreeSet.[就个人认为] java集合容器本人理解为 ...

  4. 计算机程序的思维逻辑 (43) - 剖析TreeMap

    40节介绍了HashMap,我们提到,HashMap有一个重要局限,键值对之间没有特定的顺序,我们还提到,Map接口有另一个重要的实现类TreeMap,在TreeMap中,键值对之间按键有序,Tree ...

  5. 使用UICollectionView实现首页的滚动效果

    实现类似这样的效果,可以滚动大概有两种实现方案 1. 使用scrollview来实现 2. 使用UICollectionView来实现 第一种比较简单,而且相对于性能来说不太好,于是我们使用第二种方案 ...

  6. 让我们山寨一张Windows Azure Global的壁纸

    用过国际版Azure的同学都见过一个显示了机器中主要信息的壁纸,而这个壁纸是通过Sysinternals的一款叫做bginfo来实现的,这款软件的好处是对于批量管理主(虚拟)机的管理员和使用方都很实用 ...

  7. ZKWeb网站框架介绍

    框架地址 https://github.com/zkweb-framework/ZKWeb https://github.com/zkweb-framework/ZKWeb.Plugins 新的文档地 ...

  8. Windows Live Writer 在线安装失败的解决方法。

    这里提供一种解决方法:下载离线安装包,我这个版本是2011的.大家有兴趣的话可以下载一下: http://wl.dlservice.microsoft.com/download/8/3/D/83D75 ...

  9. 2011奥斯卡最佳纪录片《监守自盗(Inside Job)》小结

    影片探讨了2008年金融危机产生的原因. 美国忽略1933年的旧法律,立新法,以放松金融监管. 投资银行被允许更高的杠杆率,33:1,也就是说,投资物跌价3%就会导致破产. 投资银行放贷,但是转手将贷 ...

  10. LINQ to SQL语句(10)之Insert

    1.简单形式 说明:new一个对象,使用InsertOnSubmit方法将其加入到对应的集合中,使用SubmitChanges()提交到数据库. var newCustomer = new Custo ...